Generic continuous spectrum for ergodic Schrodinger operators

被引:17
作者
Boshernitzan, Michael [1 ]
Damanik, David [1 ]
机构
[1] Rice Univ, Dept Math, Houston, TX 77251 USA
关键词
D O I
10.1007/s00220-008-0537-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider families of discrete Schrodinger operators on the line with potentials generated by a homeomorphism on a compact metric space and a continuous sampling function. We introduce the concepts of topological and metric repetition property. Assuming that the underlying dynamical system satisfies one of these repetition properties, we show using Gordon's Lemma that for a generic continuous sampling function, the set of elements in the associated family of Schrodinger operators that have no eigenvalues is large in a topological or metric sense, respectively. We present a number of applications, particularly to shifts and skew-shifts on the torus.
引用
收藏
页码:647 / 662
页数:16
相关论文
共 35 条
[1]   Generic singular spectrum for ergodic Schrodinger operators [J].
Avila, A ;
Damanik, D .
DUKE MATHEMATICAL JOURNAL, 2005, 130 (02) :393-400
[2]  
AVILA A, 2007, DUKE MATH J IN PRESS
[3]   SINGULAR CONTINUOUS-SPECTRUM FOR A CLASS OF ALMOST PERIODIC JACOBI MATRICES [J].
AVRON, J ;
SIMON, B .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 6 (01) :81-85
[4]   Initial powers of Sturmian sequences [J].
Berthe, Valerie ;
Holton, Charles ;
Zamboni, Luca Q. .
ACTA ARITHMETICA, 2006, 122 (04) :315-347
[5]   Explicit examples of arbitrarily large analytic ergodic potentials with zero Lyapunov exponent [J].
Bjerkloev, K. .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2006, 16 (06) :1183-1200
[6]   A CONDITION FOR MINIMAL INTERVAL EXCHANGE MAPS TO BE UNIQUELY ERGODIC [J].
BOSHERNITZAN, M .
DUKE MATHEMATICAL JOURNAL, 1985, 52 (03) :723-752
[7]  
BOSHERNITZAN M, 2007, ISRAEL J MA IN PRESS
[8]  
BOSHERNITZAN M, PINNED REPETIT UNPUB
[9]   QUANTITATIVE RECURRENCE RESULTS [J].
BOSHERNITZAN, MD .
INVENTIONES MATHEMATICAE, 1993, 113 (03) :617-631
[10]   A CONDITION FOR UNIQUE ERGODICITY OF MINIMAL SYMBOLIC FLOWS [J].
BOSHERNITZAN, MD .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1992, 12 :425-428