High-Efficiency Reconfigurable Dual-Band Class-F Power Amplifier With Harmonic Control Network Using MEMS

被引:42
作者
Gilasgar, Mitra [1 ,2 ]
Barlabe, Antorti [1 ]
Pradell, Lluis [1 ]
机构
[1] Univ Politecn Cataluna, Dept Signal Theory & Commun, Barcelona 08034, Spain
[2] Ampleon Netherlands BV, NL-6534 AV Nijmegen, Netherlands
关键词
Harmonic analysis; Dual band; Microswitches; Gain; Radio frequency; Wireless communication; Capacitors; High efficiency; MEMS; reconfigurable; RF class-F amplifier; RF power amplifier (PA); DESIGN; MULTIBAND;
D O I
10.1109/LMWC.2020.2994373
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This letter presents a novel reconfigurable, high-efficiency class-F power amplifier (PA) structure, using a commercial GaN-HEMT, that achieves dual-band configuration not only at the fundamental frequency but also at the harmonics. With a proper harmonic tuning structure, the need for an extra filtering section is eliminated, resulting in a high dual-band efficiency with a reduced number of components and size. The reconfigurable structure uses commercial single-pole-double-throw (SPDT) and single-pole-single-throw (SPST) MEMS switches optimally placed on the stubs to select between 900 and 1800 MHz. The reconfigurable PA achieves a measured power-added efficiency (PAE) of 69.5% and a power gain of 13.6 dB while delivering an output power of 39.1 dBm at 900 MHz. At 1800 MHz, the amplifier achieves a PAE of 57.9%, a power gain of 10.5 dB, and an output power of 38.5 dBm.
引用
收藏
页码:677 / 680
页数:4
相关论文
共 22 条
[1]   Investigating Continuous Class-F Power Amplifier Using Nonlinear Embedding Model [J].
Aggrawal, Ekta ;
Rawat, Karun ;
Roblin, Patrick .
IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2017, 27 (06) :593-595
[2]  
Cai Q, 1998, IEEE MTT S INT MICR, P161, DOI 10.1109/MWSYM.1998.689347
[3]   Two-Stage High-Efficiency Concurrent Dual-Band Harmonic-Tuned Power Amplifier [J].
Cheng, Qian-Fu ;
Fu, Hai-Peng ;
Zhu, Shou-Kui ;
Ma, Jian-Guo .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2016, 64 (10) :3232-3243
[4]  
Cripps S. C., 2006, RF Power Amplifiers for Wireless Communications, V2nd ed.
[5]  
Gilasgar M., 2013, URSI Radio Science Bull, V2013, P21
[6]   A 2.4 GHz CMOS Class-F Power Amplifier With Reconfigurable Load-Impedance Matching [J].
Gilasgar, Mitra ;
Barlabe, Antoni ;
Pradell, Liuis .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2019, 66 (01) :31-42
[7]  
Han K, 2017, 2017 17TH IEEE INTERNATIONAL CONFERENCE ON COMMUNICATION TECHNOLOGY (ICCT 2017), P1201, DOI 10.1109/ICCT.2017.8359825
[8]   Design of Multioctave Bandwidth Power Amplifier Based on Resistive Second-Harmonic Impedance Continuous Class-F [J].
Huang, Hang ;
Zhang, Bo ;
Yu, Cuiping ;
Gao, Jinchun ;
Wu, Yongle ;
Liu, Yuanan .
IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2017, 27 (09) :830-832
[9]   Reconfigurable and Concurrent Dual-Band Doherty Power Amplifier for Multiband and Multistandard Applications [J].
Kalyan, Robin ;
Rawat, Karun ;
Koul, Shiban K. .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2017, 65 (01) :198-208
[10]   Multiband and Multimode Concurrent PA With Novel Intermodulation Tuning Network for Linearity Improvement [J].
Li, Jing ;
Chen, Wenhua ;
Huang, Fei ;
Feng, Zhenghe .
IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2018, 28 (03) :248-250