Strongly embedded subspaces of p-convex Banach function spaces

被引:6
作者
Calabuig, J. M. [1 ]
Rodriguez, J. [2 ]
Sanchez-Perez, E. A. [1 ]
机构
[1] Univ Politecn Valencia, Inst Univ Matemat Pura & Aplicada, Valencia 46022, Spain
[2] Univ Murcia, Fac Informat, Dept Matemat Aplicada, Espinardo 30100, Murcia, Spain
关键词
Strongly embedded subspace; p-Convex Banach function space; Strictly singular operator; Vector measure; STRICTLY SINGULAR INCLUSIONS; LATTICES;
D O I
10.1007/s11117-012-0204-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let be a p-convex () order continuous Banach function space over a positive finite measure . We characterize the subspaces of which can be found simultaneously in and a suitable space, where is a positive finite measure related to the representation of as an space of a vector measure . We provide in this way new tools to analyze the strict singularity of the inclusion of in such an space. No rearrangement invariant type restrictions on are required.
引用
收藏
页码:775 / 791
页数:17
相关论文
共 15 条
  • [1] Strictly singular inclusions of rearrangement invariant spaces and Rademacher spaces
    Astashkin, Sergei V.
    Hernandez, Francisco L.
    Semenov, Evgeni M.
    [J]. STUDIA MATHEMATICA, 2009, 193 (03) : 269 - 283
  • [2] On strictly singular and strictly cosingular embeddings between Banach lattices of functions
    Cobos, F
    Pustylnik, E
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2002, 133 : 183 - 190
  • [3] Diestel J., 1995, CAMBRIDGE STUDIES AD
  • [4] Diestel J., 1977, Vector Measures, Mathematical surveys and monographs, V15
  • [5] Spaces of p-integrable functions with respect to a vector measure
    Fernández, A
    Mayoral, F
    Naranjo, F
    Sáez, C
    Sánchez-Pérez, EA
    [J]. POSITIVITY, 2006, 10 (01) : 1 - 16
  • [6] Vector measure Maurey-Rosenthal-type factorizations and l-sums of L1-spaces
    Fernández, A
    Mayoral, F
    Naranjo, F
    Sáez, C
    Sánchez-Pérez, EA
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 220 (02) : 460 - 485
  • [7] BANACH-LATTICES AND SPACES HAVING LOCAL UNCONDITIONAL STRUCTURE, WITH APPLICATIONS TO LORENTZ FUNCTION SPACES
    FIGIEL, T
    JOHNSON, WB
    TZAFRIRI, L
    [J]. JOURNAL OF APPROXIMATION THEORY, 1975, 13 (04) : 395 - 412
  • [8] Characterizations of strictly singular operators on Banach lattices
    Flores, J.
    Hernandez, F. L.
    Kalton, N. J.
    Tradacete, P.
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2009, 79 : 612 - 630
  • [9] Strictly singular and strictly co-singular inclusions between symmetric sequence spaces
    Hernández, FL
    Sánchez, VM
    Semenov, EM
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 291 (02) : 459 - 476
  • [10] Strictly singular embeddings between rearrangement invariant spaces
    Hernandez, FL
    Novikov, SY
    Semenov, EM
    [J]. POSITIVITY, 2003, 7 (1-2) : 119 - 124