Motion of W and He atoms during formation of W fuzz

被引:42
作者
Doerner, R. P. [1 ]
Nishijima, D. [1 ]
Krasheninnikov, S. I. [1 ]
Schwarz-Selinger, T. [2 ]
Zach, M. [3 ]
机构
[1] UCSD, Energy Res Ctr, La Jolla, CA 92093 USA
[2] Max Planck Inst Plasma Phys, Boltzmannstr 2, D-85748 Garching, Germany
[3] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37830 USA
关键词
plasma-material interaction; tungsten fuzz; helium nano-bubbles; TUNGSTEN; HELIUM;
D O I
10.1088/1741-4326/aab96a
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Measurements are conducted to identify the motion of tungsten and helium atoms during the formation of tungsten fuzz. In a first series of experiments the mobility of helium within the growing fuzz was measured by adding He-3 to the different stages of plasma exposure under conditions that promoted tungsten fuzz growth. Ion beam analysis was used to quantify the amount of He-3 remaining in the samples following the plasma exposure. The results indicate that the retention of helium in bubbles within tungsten is a dynamic process with direct implantation rather than diffusion into the bubbles, best describing the motion of the helium atoms. In the second experiment, an isotopically enriched layer of tungsten (similar to 92.99% W-182) is deposited on the surface of a bulk tungsten sample with the natural abundance of the isotopes. This sample is then exposed to helium plasma at the conditions necessary to support the formation of tungsten 'fuzz'. Depth profiles of the concentration of each of the tungsten isotopes are obtained using secondary ion mass spectrometry (SIMS) before and after the plasma exposure. The depth profiles clearly show mixing of tungsten atoms from the bulk sample toward the surface of the fuzz. This supports a physical picture of the dynamic behavior of helium bubbles which, also, causes an enhanced mixing of tungsten atoms.
引用
收藏
页数:6
相关论文
共 17 条
[1]   Helium induced nanoscopic morphology on tungsten under fusion relevant plasma conditions [J].
Baldwin, M. J. ;
Doerner, R. P. .
NUCLEAR FUSION, 2008, 48 (03)
[2]   The influence of plasma-surface interaction on the performance of tungsten at the ITER divertor vertical targets [J].
De Temmerman, G. ;
Hirai, T. ;
Pitts, R. A. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2018, 60 (04)
[3]   Quantitatively measuring the influence of helium in plasma-exposed tungsten [J].
Doerner, R. P. ;
Baldwin, M. J. ;
Simmonds, M. ;
Yu, J. H. ;
Buzi, L. ;
Schwarz-Selinger, T. .
NUCLEAR MATERIALS AND ENERGY, 2017, 12 :372-378
[4]  
Eckstein W., 2017, TOPICS APPL PHYS, V110
[5]   Experimental mechanistic investigation of the nanostructuring of tungsten with low energy helium plasmas [J].
Fiflis, P. ;
Connolly, N. ;
Ruzic, D. N. .
JOURNAL OF NUCLEAR MATERIALS, 2016, 482 :201-209
[6]   EROSION AND REDEPOSITION EXPERIMENTS IN THE PISCES FACILITY [J].
GOEBEL, DM ;
HIROOKA, Y ;
CONN, RW ;
LEUNG, WK ;
CAMPBELL, GA ;
BOHDANSKY, J ;
WILSON, KL ;
BAUER, W ;
CAUSEY, RA ;
PONTAU, AE ;
KRAUSS, AR ;
GRUEN, DM ;
MENDELSOHN, MH .
JOURNAL OF NUCLEAR MATERIALS, 1987, 145 :61-70
[7]   Fuzzy nanostructure growth on Ta/Fe by He plasma irradiation [J].
Kajita, Shin ;
Ishida, Tomoya ;
Ohno, Noriyasu ;
Hwangbo, Dogyun ;
Yoshida, Tomoko .
SCIENTIFIC REPORTS, 2016, 6
[8]   TEM observation of the growth process of helium nanobubbles on tungsten: Nanostructure formation mechanism [J].
Kajita, Shin ;
Yoshida, Naoaki ;
Yoshihara, Reiko ;
Ohno, Noriyasu ;
Yamagiwa, Masato .
JOURNAL OF NUCLEAR MATERIALS, 2011, 418 (1-3) :152-158
[9]   Formation process of tungsten nanostructure by the exposure to helium plasma under fusion relevant plasma conditions [J].
Kajita, Shin ;
Sakaguchi, Wataru ;
Ohno, Noriyasu ;
Yoshida, Naoaki ;
Saeki, Tsubasa .
NUCLEAR FUSION, 2009, 49 (09)
[10]   Molecular dynamics simulations of ballistic He penetration into W fuzz [J].
Klaver, T. P. C. ;
Nordlund, K. ;
Morgan, T. W. ;
Westerhof, E. ;
Thijsse, B. J. ;
van de Sanden, M. C. M. .
NUCLEAR FUSION, 2016, 56 (12)