Coherent Pattern in Multi-Layer Brain Networks: Application to Epilepsy Identification

被引:12
作者
Huang, Jiashuang [1 ,2 ]
Zhu, Qi [3 ]
Wang, Mingliang [3 ]
Zhou, Luping [4 ]
Zhang, Zhiqiang [5 ,6 ]
Zhang, Daoqiang [3 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Dept Comp Sci & Engn, Nanjing 210016, Peoples R China
[2] MIIT Key Lab Pattern Anal & Machine Intelligence, Nanjing 210016, Peoples R China
[3] Nanjing Univ Aeronaut & Astronaut, Nanjing 210016, Peoples R China
[4] Univ Sydney, Sch Elect & Informat Engn, Sydney, NSW 2006, Australia
[5] Nanjing Univ, Sch Med, Nanjing, Peoples R China
[6] Nanjing Univ, State Key Lab Analyt Chem Life Sci, Nanjing, Peoples R China
基金
中国国家自然科学基金; 澳大利亚研究理事会;
关键词
Matrix decomposition; Epilepsy; Brain modeling; Support vector machines; Feature extraction; Functional magnetic resonance imaging; Multi-layer network; Coherent pattern; Structural connectivity; Functional connectivity; STATE FUNCTIONAL CONNECTIVITY; RESTING-STATE;
D O I
10.1109/JBHI.2019.2962519
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Currently, how to conjointly fuse structural connectivity (SC) and functional connectivity (FC) for identifying brain diseases is a hot topic in the area of brain network analysis. Most of the existing works combine two types of connectivity in decision level, thus ignoring the underlying relationship between SC and FC. To solve this problem, in this paper, we model the brain network as the multi-layer network formed by the SC and FC, and then propose a coherent pattern to represent structural information of the multi-layer network for the brain disease identification. The proposed coherent pattern consists of a paired-subgraph extracted from the FC and SC within the same node-set. Compared with the previous methods, this coherent pattern not only describes the connectivity information of both SC and FC by subgraphs at each layer, but also reflects their intrinsic relationship by the co-occurrence pattern of the paired-subgraph. Based on this coherent pattern, we further develop a framework for identifying brain diseases. Specifically, we first construct multi-layer networks by using SC and FC for each subject and then mine coherent patterns that frequently appear in each group. Next, we select the discriminative coherent pattern from these frequent coherent patterns according to their frequency of occurrence. Finally, we construct a feature matrix for each subject based on the binary indicator vector and then use the support vector machine (SVM) as its classifier. Experimental results on real epilepsy datasets demonstrate that our method outperforms several state-of-the-art approaches in the tasks of brain disease classification.
引用
收藏
页码:2609 / 2620
页数:12
相关论文
共 51 条
  • [1] Disrupted modularity and local connectivity of brain functional networks in childhood-onset schizophrenia
    Alexander-Bloch, Aaron F.
    Gogtay, Nitin
    Meunier, David
    Birn, Rasmus
    Clasen, Liv
    Lalonde, Francois
    Lenroot, Rhoshel
    Giedd, Jay
    Bullmore, Edward T.
    [J]. FRONTIERS IN SYSTEMS NEUROSCIENCE, 2010, 4
  • [2] What We Know About the Brain Structure-Function Relationship
    Batista-Garcia-Ramo, Karla
    Ivette Fernandez-Verdecia, Caridad
    [J]. BEHAVIORAL SCIENCES, 2018, 8 (04)
  • [3] Multilayer motif analysis of brain networks
    Battiston, Federico
    Nicosia, Vincenzo
    Chavez, Mario
    Latora, Vito
    [J]. CHAOS, 2017, 27 (04)
  • [4] Higher-order organization of complex networks
    Benson, Austin R.
    Gleich, David F.
    Leskovec, Jure
    [J]. SCIENCE, 2016, 353 (6295) : 163 - 166
  • [5] Histopathological Findings in Brain Tissue Obtained during Epilepsy Surgery
    Blumcke, I.
    Spreafico, R.
    Haaker, G.
    Coras, R.
    Kobow, K.
    Bien, C. G.
    Pfaefflin, M.
    Elger, C.
    Widman, G.
    Schramm, J.
    Becker, A.
    Braun, K. P.
    Leijten, F.
    Baayen, J. C.
    Aronica, E.
    Chassoux, F.
    Hamer, H.
    Stefan, H.
    Roessler, K.
    Thom, M.
    Walker, M. C.
    Sisodiya, S. M.
    Duncan, J. S.
    McEvoy, A. W.
    Pieper, T.
    Holthausen, H.
    Kudernatsch, M.
    Meencke, H. J.
    Kahane, P.
    Schulze-Bonhage, A.
    Zentner, J.
    Heiland, D. H.
    Urbach, H.
    Steinhoff, B. J.
    Bast, T.
    Tassi, L.
    Lo Russo, G.
    Ozkara, C.
    Oz, B.
    Krsek, P.
    Vogelgesang, S.
    Runge, U.
    Lerche, H.
    Weber, Y.
    Honavar, M.
    Pimentel, J.
    Arzimanoglou, A.
    Ulate-Campos, A.
    Noachtar, S.
    Hartl, E.
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2017, 377 (17) : 1648 - 1656
  • [6] Network Analysis of Resting State EEG in the Developing Young Brain: Structure Comes With Maturation
    Boersma, Maria
    Smit, Dirk J. A.
    de Bie, Henrica M. A.
    Van Baal, G. Caroline M.
    Boomsma, Dorret I.
    de Geus, Eco J. C.
    Delemarre-van de Waal, Henriette A.
    Stam, Cornelis J.
    [J]. HUMAN BRAIN MAPPING, 2011, 32 (03) : 413 - 425
  • [7] Cao B., 2015, ARXIV150804554
  • [8] Chang C.-C., 2011, ACM T INTEL SYST TEC, V2, P27, DOI DOI 10.1145/1961189.1961199
  • [9] Multilayer modeling and analysis of human brain networks
    De Domenico, Manlio
    [J]. GIGASCIENCE, 2017, 6 (05): : 1 - 8
  • [10] Dynamics of functional connectivity in multilayer cortical brain network during sensory information processing
    Frolov, Nikita S.
    Maksimenko, Vladimir A.
    Khramova, Marina, V
    Pisarchik, Alexander N.
    Hramov, Alexander E.
    [J]. EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2019, 228 (11) : 2381 - 2389