A robust fuzzy clustering algorithm using mean-field-approximation based hidden Markov random field model for image segmentation

被引:2
作者
Chen, Aiguo [1 ]
Wang, Shitong [1 ]
机构
[1] Jiangnan Univ, Sch Digital Media, Wuxi, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Image segmentation; fuzzy c-means clustering; hidden Markov random field; mean field approximation;
D O I
10.3233/JIFS-151345
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Although how to deal well with images corrupted with noise is a commonly encountered task in image segmentation, the design of efficient and robust segmentation algorithms still keeps a challenging research topic. In this paper, a robust fuzzy clustering-based image segmentation algorithm is presented to effectively segment noisy images. The proposed algorithm is derived from both the conventional fuzzy c-means (FCM) clustering algorithm and the hidden Markov random field (HMRF) model with the capability of incorporating spatial information. The performance of the proposed algorithm is experimentally evaluated with the comparison algorithms. Experimental results on synthetic and real images demonstrate the effectiveness of the proposed algorithm.
引用
收藏
页码:177 / 188
页数:12
相关论文
共 36 条
[1]   A modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data [J].
Ahmed, MN ;
Yamany, SM ;
Mohamed, N ;
Farag, AA ;
Moriarty, T .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2002, 21 (03) :193-199
[2]  
Al-amri SalemSaleh., 2010, Journal of Computing, V2, P83, DOI DOI 10.48550/ARXIV.1005.4020
[3]   Robust and automated unimodal histogram thresholding and potential applications [J].
Baradez, MO ;
McGuckin, CP ;
Forraz, N ;
Pettengell, R ;
Hoppe, A .
PATTERN RECOGNITION, 2004, 37 (06) :1131-1148
[4]   STATISTICAL-ANALYSIS OF NON-LATTICE DATA [J].
BESAG, J .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES D-THE STATISTICIAN, 1975, 24 (03) :179-195
[5]  
BESAG J, 1986, J R STAT SOC B, V48, P259
[6]  
Bezdek C. James, 1981, PATTERN RECOGNITION
[7]   EM procedures using mean field-like approximations for Markov model-based image segmentation [J].
Celeux, G ;
Forbes, F ;
Peyrard, N .
PATTERN RECOGNITION, 2003, 36 (01) :131-144
[8]   Factor Analysis Latent Subspace Modeling and Robust Fuzzy Clustering Using t-Distributions [J].
Chatzis, Sotirios ;
Varvarigou, Theodora .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2009, 17 (03) :505-517
[9]   Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure [J].
Chen, SC ;
Zhang, DQ .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2004, 34 (04) :1907-1916
[10]   Design and construction of a realistic digital brain phantom [J].
Collins, DL ;
Zijdenbos, AP ;
Kollokian, V ;
Sled, JG ;
Kabani, NJ ;
Holmes, CJ ;
Evans, AC .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 1998, 17 (03) :463-468