Fast GPU Approximation of EPZS Motion Estimation Using Branching

被引:0
|
作者
Montero, Pablo [1 ]
Taibo, Javier [1 ]
机构
[1] Univ A Coruna, CITIC, MADS Grp, La Coruna, Spain
来源
2013 IEEE 15TH INTERNATIONAL WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING (MMSP) | 2013年
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper studies the adaptation of one of the most popular motion estimation methods to a massively parallel environment. To achieve the performance benefits that this and other related methods exhibit in CPU, a proper use of the GPU branching capabilities is required. We prove this claim and the viability of the branching approach, and achieve performance benefits of over x7 compared to other fast GPU approaches. Our implemented method works very close in encoding efficiency to the reference CPU encoder for small frame sizes and high definition sequences with high bitrates, but suffers at low bitrates in high definition sequences, a fact that is common to other fast GPU implementations, but is stronger in this case due to the nature of the EPZS method. The implemented approach achieves a motion estimation performance of 722 fps on 1080p sequences using a NVIDIA GTX 580 GPU.
引用
收藏
页码:356 / 361
页数:6
相关论文
共 50 条
  • [1] Fast LV motion estimation using subspace approximation techniques
    Wang, YP
    Chen, YS
    Amini, AA
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2001, 20 (06) : 499 - 513
  • [2] Fast-Coding Robust Motion Estimation Model in a GPU
    Garcia, Carlos
    Botella, Guillermo
    de Sande, Francisco
    Prieto-Matias, Manuel
    REAL-TIME IMAGE AND VIDEO PROCESSING 2015, 2015, 9400
  • [3] Fast motion estimation for HEVC on graphics processing unit (GPU)
    Lee, Dongkyu
    Sim, Donggyu
    Cho, Keeseong
    Oh, Seoung-Jun
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2016, 12 (02) : 549 - 562
  • [4] Fast motion estimation for HEVC on graphics processing unit (GPU)
    Dongkyu Lee
    Donggyu Sim
    Keeseong Cho
    Seoung-Jun Oh
    Journal of Real-Time Image Processing, 2016, 12 : 549 - 562
  • [5] Accelerating HEVC Motion Estimation Using GPU
    Kao, Hao-Che
    Wang, I-Ching
    Lee, Che-Rung
    Lo, Chi-Wen
    Kang, Hao-Ping
    2016 IEEE SECOND INTERNATIONAL CONFERENCE ON MULTIMEDIA BIG DATA (BIGMM), 2016, : 255 - 258
  • [6] Performance comparison of GPU-accelerated fast motion estimation method
    Chen, Pengcheng
    Peng, Bo
    Zou, Anxin
    Xu, Luwen
    2019 IEEE INTL CONF ON PARALLEL & DISTRIBUTED PROCESSING WITH APPLICATIONS, BIG DATA & CLOUD COMPUTING, SUSTAINABLE COMPUTING & COMMUNICATIONS, SOCIAL COMPUTING & NETWORKING (ISPA/BDCLOUD/SOCIALCOM/SUSTAINCOM 2019), 2019, : 660 - 665
  • [7] A fast motion estimation using prediction of motion estimation error
    Kang, HS
    Park, SM
    Lee, SW
    Choi, JG
    Yun, BJ
    KNOWLEDGE-BASED INTELLIGENT INFORMATION AND ENGINEERING SYSTEMS, PT 2, PROCEEDINGS, 2004, 3214 : 253 - 260
  • [8] FAST MOTION ESTIMATION FOR HEVC WITH ADAPTIVE SEARCH RANGE DECISION ON CPU AND GPU
    Kim, Sangmin
    Lee, Dong-Kyu
    Sohn, Chae-Bong
    Oh, Seoung-Jun
    2014 IEEE CHINA SUMMIT & INTERNATIONAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (CHINASIP), 2014, : 349 - 353
  • [9] Field Approximation Using Piecewise Polynomials for Fast Volume Rendering on GPU
    Takagi, Hidetaka
    Aoyama, Shuuhei
    Makino, Ryousuke
    Hatsuda, Takenori
    Nakata, Susumu
    Tanaka, Satoshi
    ADVANCED METHODS, TECHNIQUES, AND APPLICATIONS IN MODELING AND SIMULATION, 2012, 4 : 498 - 505
  • [10] Novel FPGA Implementation of EPZS Motion Estimation in H.264 AVC
    Bahran, Nahed Ali
    Zekry, Abdelhalim
    Fathy, Ramy Ahmed
    Ebian, Mohamed Fathi
    Sayed, Reem Ibrahim
    RECENT TRENDS IN INFORMATION AND COMMUNICATION TECHNOLOGY, 2018, 5 : 433 - 445