Convergence and error analysis for a class of splitting schemes in incompressible fluid-structure interaction

被引:14
作者
Fernandez, Miguel A. [1 ]
Mullaert, Jimmy
机构
[1] Inria Paris Rocquencourt, BP 105, F-78153 Le Chesnay, France
关键词
fluid-structure interaction; Stokes flow; thick-walled solid; finite element method; mass-lumping; splitting schemes; a priori error estimates; FINITE-ELEMENT METHODS; BLOOD-FLOW; STABILIZATION; STABILITY; ALGORITHM;
D O I
10.1093/imanum/drv055
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to the convergence analysis of the generalized Robin-Neumann schemes introduced in Fernandez et al. (2015, Generalized Robin-Neumann explicit coupling schemes for incompressible fluid-structure interaction: stability analysis and numerics. Internat. J. Numer. Methods Engrg., 101, 199-229) for the coupling of a viscous incompressible fluid with a thick-walled elastic or viscoelastic structure. To this purpose, a representative linearized setting is considered. The methods are formulated within a class of operator splitting schemes which treat implicitly the coupling between the fluid and the solid inertia contributions. This guarantees energy stability. A priori error estimates are derived for all the explicit and semi-implicit variants. The analysis predicts a nonuniformity in space of the splitting error, hence confirming the numerical evidence of Fernandez et al. (2015, Generalized Robin-Neumann explicit coupling schemes for incompressible fluid-structure interaction: stability analysis and numerics. Internat. J. Numer. Methods Engrg., 101, 199-229) for the explicit variants. Besides, the analysis demonstrates that the genesis of this accuracy loss is the spatial nonuniformity of the discrete elastic or viscoelastic solid operator. The theoretical findings are illustrated via a numerical study which shows, in particular, that alternative splitting schemes recently reported in the literature also suffer from these accuracy issues.
引用
收藏
页码:1748 / 1782
页数:35
相关论文
共 33 条
[1]   Convergence analysis of a projection semi-implicit coupling scheme for fluid-structure interaction problems [J].
Astorino, M. ;
Grandmont, C. .
NUMERISCHE MATHEMATIK, 2010, 116 (04) :721-767
[2]   Splitting methods based on algebraic factorization for fluid-structure interaction [J].
Badia, Santiago ;
Quaini, Annalisa ;
Quarteroni, Alfio .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2008, 30 (04) :1778-1805
[3]   Fluid-structure partitioned procedures based on Robin transmission conditions [J].
Badia, Santiago ;
Nobile, Fabio ;
Vergara, Christian .
JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (14) :7027-7051
[4]   An analysis of a new stable partitioned algorithm for FSI problems. Part I: Incompressible flow and elastic solids [J].
Banks, J. W. ;
Henshaw, W. D. ;
Schwendeman, D. W. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 269 :108-137
[5]  
Brenner S.C., 2008, MATH THEORY FINITE E, V15
[6]  
Brezzi F., 1984, STABILIZATION FINITE, P11, DOI DOI 10.1007/978-3-663-14169-3_2
[7]   A modular, operator-splitting scheme for fluid-structure interaction problems with thick structures [J].
Bukac, M. ;
Canic, S. ;
Glowinski, R. ;
Muha, B. ;
Quaini, A. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2014, 74 (08) :577-604
[8]   Fluid-structure interaction in blood flow capturing non-zero longitudinal structure displacement [J].
Bukac, Martina ;
Canic, Suncica ;
Glowinski, Roland ;
Tambaca, Josip ;
Quaini, Annalisa .
JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 235 :515-541
[9]   Continuous interior penalty finite element method for Oseen's equations [J].
Burman, Erik ;
Fernandez, Miguel A. ;
Hansbo, Peter .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (03) :1248-1274
[10]   Explicit strategies for incompressible fluid-structure interaction problems: Nitsche type mortaring versus Robin-Robin coupling [J].
Burman, Erik ;
Fernandez, Miguel A. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2014, 97 (10) :739-758