Continuous wavelet transform on Triebel-Lizorkin spaces

被引:0
|
作者
Baison-Olmo, Antonio Luis [1 ]
Cruz-Barriguete, Victor Alberto [1 ]
Navarro, Jaime [1 ]
机构
[1] Metropolitan Autonomous Metropolitan Univ, Dept Basic Sci, Mexico City, DF, Mexico
关键词
Admissible function; continuous wavelet transform; Triebel-Lizorkin spaces; weak solution; regularity; differential operators;
D O I
10.55730/1300-0098.3325
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The continuous wavelet transform in higher dimensions is used to prove the regularity of weak solutions u is an element of Lp(Rn) under Qu = f where f belongs to the Triebel-Lizorkin space Fp r,q(Rn) where 1 < p, q < infinity, 0 < r < 1, and where Q = n-ary sumation |beta|<= m c beta partial differential beta is a linear partial differential operator of order m > 0 with positive constant coefficients c beta.
引用
收藏
页码:3159 / 3170
页数:13
相关论文
共 50 条
  • [21] Commutators estimates on Triebel-Lizorkin spaces
    Jiang, Liya
    Jia, Houyu
    Xu, Han
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2006, 49 (03): : 414 - 427
  • [22] On the duality of variable Triebel-Lizorkin spaces
    Drihem, Douadi
    COLLECTANEA MATHEMATICA, 2020, 71 (02) : 263 - 278
  • [23] Wavelet transforms for homogeneous mixed-norm Triebel-Lizorkin spaces
    Georgiadis, A. G.
    Johnsen, J.
    Nielsen, M.
    MONATSHEFTE FUR MATHEMATIK, 2017, 183 (04): : 587 - 624
  • [24] Quarklet characterizations for Triebel-Lizorkin spaces
    Hovemann, Marc
    Dahlke, Stephan
    JOURNAL OF APPROXIMATION THEORY, 2023, 295
  • [25] Triebel-Lizorkin spaces with general weights
    Drihem, Douadi
    ADVANCES IN OPERATOR THEORY, 2023, 8 (01)
  • [26] Classification of anisotropic Triebel-Lizorkin spaces
    Sarah Koppensteiner
    Jordy Timo van Velthoven
    Felix Voigtlaender
    Mathematische Annalen, 2024, 389 : 1883 - 1923
  • [27] TRIEBEL-LIZORKIN SPACES ON SPACES OF HOMOGENEOUS TYPE
    HAN, YS
    STUDIA MATHEMATICA, 1994, 108 (03) : 247 - 273
  • [28] The characterization of the Triebel-Lizorkin spaces forp=∞
    Huy-Qui Bui
    Mitchell H. Taibleson
    Journal of Fourier Analysis and Applications, 2000, 6 : 537 - 550
  • [29] The Triebel-Lizorkin scale of function spaces for the Fourier-Helgason transform
    Skrzypczak, L
    MATHEMATISCHE NACHRICHTEN, 1998, 190 : 251 - 274
  • [30] Wavelet characterization of Triebel-Lizorkin spaces for p = ∞ on spaces of homogeneous type and its applications?
    Wang, Fan
    Yang, Dachun
    Yuan, Wen
    JOURNAL OF APPROXIMATION THEORY, 2023, 285