Multi-scale hierarchical approach for parametric mapping: Assessment on multi-compartmental models

被引:11
|
作者
Rizzo, G. [1 ]
Turkheimer, F. E. [2 ,3 ]
Bertoldo, A. [1 ]
机构
[1] Univ Padua, Dept Informat Engn, I-35131 Padua, Italy
[2] Kings Coll London, Inst Psychiat, Ctr Neuroimaging, London SE5 8AF, England
[3] Univ London Imperial Coll Sci Technol & Med, Div Expt Med, London W12 0NN, England
基金
英国医学研究理事会;
关键词
PET; Voxel-wise quantification; Compartmental modeling; Basis function method; POSITRON-EMISSION-TOMOGRAPHY; REFERENCE REGION; RECEPTOR-LIGAND; DYNAMIC PET; HUMAN BRAIN; BINDING; QUANTIFICATION; REPRODUCIBILITY; RADIOLIGANDS; CEREBELLUM;
D O I
10.1016/j.neuroimage.2012.11.045
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
This paper investigates a new hierarchical method to apply basis function to mono- and multi-compartmental models (Hierarchical-Basis Function Method, H-BFM) at a voxel level. This method identifies the parameters of the compartmental model in its nonlinearized version, integrating information derived at the region of interest (ROI) level by segmenting the cerebral volume based on anatomical definition or functional clustering. We present the results obtained by using a two tissue-four rate constant model with two different tracers ([C-11]FLB457 and [carbonyl-C-11]WAY100635), one of the most complex models used in receptor studies, especially at the voxel level. H-BFM is robust and its application on both [C-11]FLB457 and [carbonyl-C-11] WAY100635 allows accurate and precise parameter estimates, good quality parametric maps and a low percentage of voxels out of physiological bound (<8%). The computational time depends on the number of basis functions selected and can be compatible with clinical use (similar to 6 h for a single subject analysis). The novel method is a robust approach for PET quantification by using compartmental modeling at the voxel level. In particular, different from other proposed approaches, this method can also be used when the linearization of the model is not appropriate. We expect that applying it to clinical data will generate reliable parametric maps. (c) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:344 / 353
页数:10
相关论文
共 50 条
  • [21] Regularization of PET reconstruction using multi-scale adaptive thresholding
    Jin, YP
    Esser, P
    Aikawa, T
    Kuang, B
    Duan, S
    Laine, A
    PROCEEDINGS OF THE 26TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-7, 2004, 26 : 1616 - 1619
  • [22] Innovative multi-scale approach to study the phenotypic variation of seedling leaves in four weedy Amaranthus species
    Scarpin, D.
    Este, G.
    D'Este, F.
    Boscutti, F.
    Milani, A.
    Panozzo, S.
    Varotto, S.
    Vuerich, M.
    Petrussa, E.
    Braidot, E.
    PLANT BIOLOGY, 2024,
  • [23] Multi-task multi-scale learning for outcome prediction in 3D PET images
    Amyar, Amine
    Modzelewski, Romain
    Vera, Pierre
    Morard, Vincent
    Ruan, Su
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 151
  • [24] Assessment of unilateral ureter obstruction with multi-parametric MRI
    Wang, Feng
    Takahashi, Keiko
    Li, Hua
    Zu, Zhongliang
    Li, Ke
    Xu, Junzhong
    Harris, Raymond C.
    Takahashi, Takamune
    Gore, John C.
    MAGNETIC RESONANCE IN MEDICINE, 2018, 79 (04) : 2216 - 2227
  • [25] A multi-scale map of cell structure fusing protein images and interactions
    Qin, Yue
    Huttlin, Edward L.
    Winsnes, Casper F.
    Gosztyla, Maya L.
    Wacheul, Ludivine
    Kelly, Marcus R.
    Blue, Steven M.
    Zheng, Fan
    Chen, Michael
    Schaffer, Leah, V
    Licon, Katherine
    Backstrom, Anna
    Vaites, Laura Pontano
    Lee, John J.
    Ouyang, Wei
    Liu, Sophie N.
    Zhang, Tian
    Silva, Erica
    Park, Jisoo
    Pitea, Adriana
    Kreisberg, Jason F.
    Gygi, Steven P.
    Ma, Jianzhu
    Harper, J. Wade
    Yeo, Gene W.
    Lafontaine, Denis L. J.
    Lundberg, Emma
    Ideker, Trey
    NATURE, 2021, 600 (7889) : 536 - +
  • [26] Multi-scale signaling and tumor evolution in high-grade gliomas
    Liu, Jingxian
    Cao, Song
    Imbach, Kathleen J.
    Gritsenko, Marina A.
    Lih, Tung-Shing M.
    Kyle, Jennifer E.
    Yaron-Barir, Tomer M.
    Binder, Zev A.
    Li, Yize
    Strunilin, Ilya
    Wang, Yi-Ting
    Tsai, Chia-Feng
    Ma, Weiping
    Chen, Lijun
    Clark, Natalie M.
    Shinkle, Andrew
    Deen, Nataly Naser Al
    Caravan, Wagma
    Houston, Andrew
    Simin, Faria Anjum
    Wyczalkowski, Matthew A.
    Wang, Liang-Bo
    Storrs, Erik
    Chen, Siqi
    Illindala, Ritvik
    Li, Yuping D.
    Jayasinghe, Reyka G.
    Rykunov, Dmitry
    Cottingham, Sandra L.
    Chu, Rosalie K.
    Weitz, Karl K.
    Moore, Ronald J.
    Sagendorf, Tyler
    Petyuk, Vladislav A.
    Nestor, Michael
    Bramer, Lisa M.
    Stratton, Kelly G.
    Schepmoes, Athena A.
    Couvillion, Sneha P.
    Eder, Josie
    Kim, Young-Mo
    Gao, Yuqian
    Fillmore, Thomas L.
    Zhao, Rui
    Monroe, Matthew E.
    Southard-Smith, Austin N.
    Li, Yang E.
    Lu, Rita Jui-Hsien
    Johnson, Jared L.
    Wiznerowicz, Maciej
    CANCER CELL, 2024, 42 (07) : 1217 - 1238.e19
  • [27] Upscaling Uncertainty with Dynamic Discrepancy for a Multi-Scale Carbon Capture System
    Bhat, K. Sham
    Mebane, David S.
    Mahapatra, Priyadarshi
    Storlie, Curtis B.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2017, 112 (520) : 1453 - 1467
  • [28] Multi-scale modelling of cancer cell intravasation: the role of cadherins in metastasis
    Ramis-Conde, Ignacio
    Chaplain, Mark A. J.
    Anderson, Alexander R. A.
    Drasdo, Dirk
    PHYSICAL BIOLOGY, 2009, 6 (01)
  • [29] Multi-scale lacunarity as an alternative to quantify and diagnose the behavior of prostate cancer
    Neves, L. A.
    Nascimento, M. Z.
    Oliveira, D. L. L.
    Martins, A. S.
    Godoy, M. F.
    Arruda, P. F. F.
    De Santi Neto, D.
    Machado, J. M.
    EXPERT SYSTEMS WITH APPLICATIONS, 2014, 41 (11) : 5017 - 5029
  • [30] Spatiotemporal multi-scale modeling of radiopharmaceutical distributions in vascularized solid tumors
    Shahvandi, Mohammad Kiani
    Soltani, M.
    Kashkooli, Farshad Moradi
    Saboury, Babak
    Rahmim, Arman
    SCIENTIFIC REPORTS, 2022, 12 (01)