High volume synthesis of silicon nanopowder by electron beam ablation of silicon ingot at atmospheric pressure

被引:6
作者
Bardakhanov, Sergey P. [1 ]
Volodin, Vladimir A. [2 ]
Efremov, Mikhail D. [2 ]
Cherepkov, Vladislav V. [3 ]
Fadeev, Sergey N. [3 ]
Korchagin, Alexey I. [3 ]
Marin, Denis V. [2 ]
Golkovskiy, Mikhail G. [3 ]
Tanashev, Yuriv Yu. [4 ]
Lysenko, Vladimir I. [1 ]
Nomoev, Andrey V. [5 ]
Buyantuev, Molon D. [5 ]
Sangaa, Deleg [6 ]
机构
[1] Russian Acad Sci, Siberian Branch, Khristianovich Inst Theoret & Appl Mech, Novosibirsk 630090, Russia
[2] Russian Acad Sci, Siberian Branch, Inst Semicond Phys, Novosibirsk 630090, Russia
[3] Russian Acad Sci, Siberian Branch, Budker Inst Nucl Phys, Novosibirsk 630090, Russia
[4] Russian Acad Sci, Siberian Branch, Boreskov Inst Catalysis, Novosibirsk 630090, Russia
[5] Buryatian State Univ, Ulan Ude 670000, Russia
[6] Mongolian Acad Sci, Inst Phys & Technol, Ulaanbaatar 210651, Mongolia
关键词
nanoparticles; silicon; electron accelerator; evaporation; nanoelectronics;
D O I
10.1143/JJAP.47.7019
中图分类号
O59 [应用物理学];
学科分类号
摘要
The evaporation of high purity silicon ingot was performed in Ar. N-2. and air atmospheres using a power electron accelerator. The obtained powders with primary particle sizes of 10-500nm were investigated usim, Brunauer-Emmett-Teller analysis (BET). X-ray diffraction (XRD), scanning electron microscopy (SEM). transmission electron microscopy (TEN). photoluminescence measurement, and Raman spectroscopy. The structure and photoluminescence properties of Si(Ar) nanopowder obtained at a large quenching rate differ substantially from those of Si(Ar) and Si(N-2) obtained at a smaller quenching rate. Photoluminescence peaks in the visible region of the spectrum are detected at room temperature for the Si(Ar) nanopowders.
引用
收藏
页码:7019 / 7022
页数:4
相关论文
共 16 条
[1]   Nanopowders obtained by evaporating initial substances in an electron accelerator at atmospheric pressure [J].
Bardakhanov, S. P. ;
Korchagin, A. I. ;
Kuksanov, N. K. ;
Lavrukhin, A. V. ;
Salimov, R. A. ;
Fadeev, S. N. ;
Cherepkov, V. V. .
DOKLADY PHYSICS, 2006, 51 (07) :353-356
[2]   SILICON QUANTUM WIRE ARRAY FABRICATION BY ELECTROCHEMICAL AND CHEMICAL DISSOLUTION OF WAFERS [J].
CANHAM, LT .
APPLIED PHYSICS LETTERS, 1990, 57 (10) :1046-1048
[3]  
COLVIN VL, 1994, NATURE, V370, P354, DOI 10.1038/370354a0
[4]   Technological applications of BINP industrial electron accelerators with focused beam extracted into atmosphere [J].
Fadeev, SN ;
Golkovski, MG ;
Korchagin, AI ;
Kuksanov, NK ;
Lavruhin, AV ;
Petrov, SE ;
Salimov, RA ;
Vaisman, AF .
RADIATION PHYSICS AND CHEMISTRY, 2000, 57 (3-6) :653-655
[5]   Silicon nanocrystals with ensemble quantum yields exceeding 60% [J].
Jurbergs, David ;
Rogojina, Elena ;
Mangolini, Lorenzo ;
Kortshagen, Uwe .
APPLIED PHYSICS LETTERS, 2006, 88 (23)
[6]   Visible and near-infrared luminescence from silicon nanostructures formed by ion implantation and pulse annealing [J].
Kachurin, GA ;
Tyschenko, IE ;
Zhuravlev, KS ;
Pazdnikov, NA ;
Volodin, VA ;
Gutakovsky, AK ;
Leier, AF ;
Skorupa, W ;
Yankov, RA .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 1997, 122 (03) :571-574
[7]   Production of silver nano-powders by electron beam evaporation [J].
Korchagin, AI ;
Kuksanov, NK ;
Lavrukhin, AV ;
Fadeev, SN ;
Salimov, RA ;
Bardakhanov, SP ;
Goncharov, VB ;
Suknev, AP ;
Paukshtis, EA ;
Larina, TV ;
Zaikovskii, VI ;
Bogdanov, SV ;
Bal'zhinimaev, BS .
VACUUM, 2005, 77 (04) :485-491
[8]  
LUKASHOV VP, 1996, Patent No. 2067077
[9]   Improved one-phonon confinement model for an accurate size determination of silicon nanocrystals [J].
Paillard, V ;
Puech, P ;
Laguna, MA ;
Carles, R ;
Kohn, B ;
Huisken, F .
JOURNAL OF APPLIED PHYSICS, 1999, 86 (04) :1921-1924
[10]   Band gap engineering of amorphous silicon quantum dots for light-emitting diodes [J].
Park, NM ;
Kim, TS ;
Park, SJ .
APPLIED PHYSICS LETTERS, 2001, 78 (17) :2575-2577