Signless Laplacian spectral radius and fractional matchings in graphs

被引:13
作者
Pan, Yingui [1 ,2 ]
Li, Jianping [2 ]
Zhao, Wei [1 ]
机构
[1] 63763 Army PLA, Lingshui 63763, Peoples R China
[2] Natl Univ Def Technol, Coll Liberal Arts & Sci, Changsha 410073, Peoples R China
基金
中国国家自然科学基金;
关键词
Signless Laplacian spectral radius; Fractional matching number; Fractional perfect matching; EIGENVALUES; NUMBER;
D O I
10.1016/j.disc.2020.112016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A fractional matching of a graph G is a function f giving each edge a number in [0, 1] so that Sigma(e is an element of Gamma(upsilon))f(e) <= 1 for each vertex upsilon is an element of V(G), where Gamma(upsilon) is the set of edges incident to upsilon. The fractional matching number of G, written alpha*'(G), is the maximum value of Sigma(e is an element of Gamma(upsilon))f(e) over all fractional matchings. In this paper, we investigate the relations between the fractional matching number and the signless Laplacian spectral radius of a graph. Moreover, we give some sufficient conditions for the existence of a fractional perfect matching of a graph in terms of the signless Laplacian spectral radius of the graph and its complement. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:5
相关论文
共 16 条
  • [1] Sharp lower bounds on the fractional matching number
    Behrend, Roger E.
    Suil, O.
    West, Douglas B.
    [J]. DISCRETE APPLIED MATHEMATICS, 2015, 186 : 272 - 274
  • [2] Eigenvalues and perfect matchings
    Brouwer, AE
    Haemers, WH
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 395 : 155 - 162
  • [3] Brouwer Andries E., 2011, SPECTRA GRAPHS MONOG
  • [4] The difference and ratio of the fractional matching number and the matching number of graphs
    Choi, Ilkyoo
    Kim, Jaehoon
    Suil, O.
    [J]. DISCRETE MATHEMATICS, 2016, 339 (04) : 1382 - 1386
  • [5] Cioaba S.M., 2005, Mathematical Reports of the Academy of Sciences, V27, P101
  • [6] Large matchings from eigenvalues
    Cioaba, Sebastian M.
    Gregory, David A.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 422 (01) : 308 - 317
  • [7] Matchings in regular graphs from eigenvalues
    Cioaba, Sebastian M.
    Gregory, David A.
    Haemers, Willem H.
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2009, 99 (02) : 287 - 297
  • [8] Signless Laplacians of finite graphs
    Cvetkovic, Dragos
    Rowlinson, Peter
    Simic, Slobodan K.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 423 (01) : 155 - 171
  • [9] TOWARDS A SPECTRAL THEORY OF GRAPHS BASED ON THE SIGNLESS LAPLACIAN, I
    Cvetkovic, Dragos
    Simic, Slobodan K.
    [J]. PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2009, 85 (99): : 19 - 33
  • [10] Godsil C., 2001, GRADUATE TEXTS MATH, V207