Computing steady-state solutions for a free boundary problem modeling tumor growth by Stokes equation

被引:27
作者
Hao, Wenrui [1 ]
Hauenstein, Jonathan D. [2 ]
Hu, Bei [1 ]
McCoy, Timothy [1 ]
Sommese, Andrew J. [1 ]
机构
[1] Univ Notre Dame, Dept Appl & Computat Math & Stat, Notre Dame, IN 46556 USA
[2] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
基金
美国国家科学基金会;
关键词
Free boundary problems; Stationary solution; Stokes equation; Bifurcation; Homotopy continuation; Tumor growth; CARCINOMA IN-SITU; STABILITY; ADHESION;
D O I
10.1016/j.cam.2012.06.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a free boundary problem modeling tumor growth where the model equations include a diffusion equation for the nutrient concentration and the Stokes equation for the proliferation of tumor cells. For any positive radius R, it is known that there exists a unique radially symmetric stationary solution. The proliferation rate mu and the cell-to-cell adhesiveness gamma are two parameters for characterizing "aggressiveness" of the tumor. We compute symmetry-breaking bifurcation branches of solutions by studying a polynomial discretization of the system. By tracking the discretized system, we numerically verified a sequence of mu/gamma symmetry breaking bifurcation branches. Furthermore, we study the stability of both radially symmetric and radially asymmetric stationary solutions. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:326 / 334
页数:9
相关论文
共 20 条
[1]   DIFFUSION REGULATED GROWTH-CHARACTERISTICS OF A SPHERICAL PREVASCULAR CARCINOMA [J].
ADAM, JA ;
MAGGELAKIS, SA .
BULLETIN OF MATHEMATICAL BIOLOGY, 1990, 52 (04) :549-582
[2]  
Bates D.J., Bertini: Software for Numerical Algebraic Geometry
[3]  
Bates D.J., 2009, CONT MATH
[4]   Adaptive multiprecision path tracking [J].
Bates, Daniel J. ;
Hauenstein, Jonathan D. ;
Sommese, Andrew J. ;
Wampler, Charles W., II .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (02) :722-746
[5]   A QUALITATIVE-ANALYSIS OF SOME MODELS OF TISSUE-GROWTH [J].
BRITTON, NF ;
CHAPLAIN, MAJ .
MATHEMATICAL BIOSCIENCES, 1993, 113 (01) :77-89
[6]   GROWTH OF NONNECROTIC TUMORS IN THE PRESENCE AND ABSENCE OF INHIBITORS [J].
BYRNE, HM ;
CHAPLAIN, MAJ .
MATHEMATICAL BIOSCIENCES, 1995, 130 (02) :151-181
[7]   A weakly nonlinear analysis of a model of avascular solid tumour growth [J].
Byrne, HM .
JOURNAL OF MATHEMATICAL BIOLOGY, 1999, 39 (01) :59-89
[8]  
Byrne HM, 1997, IMA J MATH APPL MED, V14, P305
[9]   Modelling the role of cell-cell adhesion in the growth and development of carcinoma [J].
Byrne, HM ;
Chaplain, MAJ .
MATHEMATICAL AND COMPUTER MODELLING, 1996, 24 (12) :1-17
[10]  
CHAPLAIN MAJ, 1993, NATO ADV SCI INST SE, V259, P45