Highly reproducible tip-enhanced Raman scattering using an oxidized and metallized silicon cantilever tip as a tool for everyone

被引:50
作者
Hayazawa, Norihiko [1 ,3 ,4 ]
Yano, Taka-aki [2 ,4 ,5 ]
Kawata, Satoshi [1 ,3 ,4 ,5 ]
机构
[1] RIKEN, NanoPhoton Lab, Wako, Saitama 3510198, Japan
[2] Tokyo Inst Technol, Dept Elect Chem, Yokohama, Kanagawa 2268502, Japan
[3] RIKEN, Near Field NanoPhoton Res Team, Wako, Saitama 3510198, Japan
[4] Japan Sci & Technol Agcy, CREST, Kawaguchi, Saitama 3320012, Japan
[5] Osaka Univ, Dept Appl Phys, Suita, Osaka 5650871, Japan
关键词
tip-enhanced Raman scattering; silicon cantilever; carbon nanotube; SCANNING OPTICAL MICROSCOPE; NANOSCALE CHEMICAL-ANALYSIS; COATED DIELECTRIC TIPS; SINGLE MOLECULES; FIELD ENHANCEMENT; SPECTROSCOPY; FLUORESCENCE; RESOLUTION; AMPLIFICATION; EXCITATION;
D O I
10.1002/jrs.4032
中图分类号
O433 [光谱学];
学科分类号
0703 ; 070302 ;
摘要
We have successfully improved the reproducibility of tip-enhancement effect on metallized silicon cantilever tips for characterization of carbon nanotubes. Plasmon resonance tuning relative to an excitation wavelength is crucial for efficient tip-enhancement, which is accomplished by thermal oxidization and subsequent metallization of commercial silicon tips. Because of the change of the refractive index of the tip from silicon to silicon dioxide, the plasmon resonance of the silver-coated tip is blue-shifted showing an enormous enhancement at 532 nm excitation. Highly reproducible tips exhibit an enhancement factor of >100 with a 100% yield. Because the tips are fabricated from commercially available silicon cantilever tips in a simple and robust way, our approach provides an important step of 'tip-enhanced Raman spectroscopy for everyone'. Copyright (C) 2012 John Wiley & Sons, Ltd.
引用
收藏
页码:1177 / 1182
页数:6
相关论文
共 34 条
[1]   Prolonged Blinking with TERS Probes [J].
Agapov, Rebecca L. ;
Malkovskiy, Andrey V. ;
Sokolov, Alexei P. ;
Foster, Mark D. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (18) :8900-8905
[2]   Subsurface Raman imaging with nanoscale resolution [J].
Anderson, N ;
Anger, P ;
Hartschuh, A ;
Novotny, L .
NANO LETTERS, 2006, 6 (04) :744-749
[3]  
Azoulay J, 1999, J MICROSC-OXFORD, V194, P486, DOI 10.1046/j.1365-2818.1999.00558.x
[4]   Highly Stable, Protected Plasmonic Nanostructures for Tip Enhanced Raman Spectroscopy [J].
Barrios, Carlos A. ;
Malkovskiy, Andrey V. ;
Kisliuk, Alexander M. ;
Sokolov, Alexei P. ;
Foster, Mark D. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (19) :8158-8161
[5]   SINGLE MOLECULES OBSERVED BY NEAR-FIELD SCANNING OPTICAL MICROSCOPY [J].
BETZIG, E ;
CHICHESTER, RJ .
SCIENCE, 1993, 262 (5138) :1422-1425
[6]   Near-field scattering of longitudinal fields [J].
Bouhelier, A ;
Beversluis, MR ;
Novotny, L .
APPLIED PHYSICS LETTERS, 2003, 82 (25) :4596-4598
[7]   Finding a needle in a chemical haystack: tip-enhanced Raman scattering for studying carbon nanotubes mixtures [J].
Chan, K. L. Andrew ;
Kazarian, Sergei G. .
NANOTECHNOLOGY, 2010, 21 (44)
[8]   Tuning the resonance frequency of Ag-coated dielectric tips [J].
Cui, Xudong ;
Zhang, Weihua ;
Yeo, Boon-Siang ;
Zenobi, Renato ;
Hafner, Christian ;
Erni, Daniel .
OPTICS EXPRESS, 2007, 15 (13) :8309-8316
[9]   Tip-enhanced fluorescence microscopy at 10 nanometer resolution [J].
Gerton, JM ;
Wade, LA ;
Lessard, GA ;
Ma, Z ;
Quake, SR .
PHYSICAL REVIEW LETTERS, 2004, 93 (18) :180801-1
[10]   Near-field fluorescence imaging by localized field enhancement near a sharp probe tip [J].
Hamann, HF ;
Gallagher, A ;
Nesbitt, DJ .
APPLIED PHYSICS LETTERS, 2000, 76 (14) :1953-1955