The two dimensional Lp Minkowski problem and nonlinear equations with negative exponents

被引:42
作者
Dou, Jingbo [1 ,2 ]
Zhu, Meijun [2 ]
机构
[1] Xian Univ Finance & Econ, Sch Stat, Xian 710100, Shaanxi, Peoples R China
[2] Univ Oklahoma, Dept Math, Norman, OK 73019 USA
基金
中国国家自然科学基金;
关键词
L-p Minkowski problem; Negative exponent; Blaschke-Santalo inequality; ELLIPTIC EQUATION; CLASSIFICATION;
D O I
10.1016/j.aim.2012.02.027
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we present various existence results for nonlinear differential equations related to the L-p Minkowski problem in the plane and the one dimensional conformal curvature problem. In particular, the supercritical case (that is p < -2) for the L-p Minkowski problem with sign-changing data is addressed. A new geometric sharp inequality is also obtained. Published by Elsevier Inc.
引用
收藏
页码:1209 / 1221
页数:13
相关论文
共 35 条
[1]   Self-similar solutions for the anisotropic affine curve shortening problem [J].
Ai, J ;
Chou, KS ;
Wei, JC .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2001, 13 (03) :311-337
[2]  
Andrews B, 2003, J AM MATH SOC, V16, P443
[3]  
Andrews B., 2011, COMMUNICATION SEP
[4]   SEMILINEAR EQUATIONS IN RN WITHOUT CONDITION AT INFINITY [J].
BREZIS, H .
APPLIED MATHEMATICS AND OPTIMIZATION, 1984, 12 (03) :271-282
[5]   THE DIRICHLET PROBLEM FOR NONLINEAR 2ND-ORDER ELLIPTIC-EQUATIONS .1. MONGE-AMPERE EQUATION [J].
CAFFARELLI, L ;
NIRENBERG, L ;
SPRUCK, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1984, 37 (03) :369-402
[6]  
Calabi E., 1958, MICH MATH J, V5, P105, DOI 10.1307/mmj/1028998055
[7]   A generalized affine isoperimetric inequality [J].
Chen, W ;
Howard, R ;
Lutwak, E ;
Yang, D ;
Zhang, G .
JOURNAL OF GEOMETRIC ANALYSIS, 2004, 14 (04) :597-612
[8]  
Chen W., SUPER POLYHARMONIC P
[9]   LP Minkowski problem with not necessarily positive data [J].
Chen, WX .
ADVANCES IN MATHEMATICS, 2006, 201 (01) :77-89
[10]   Classification of solutions for an integral equation [J].
Chen, WX ;
Li, CM ;
Ou, B .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2006, 59 (03) :330-343