STOCHASTIC INTEGRATION WITH RESPECT TO CYLINDRICAL LEVY PROCESSES

被引:11
作者
Jakubowski, Adam [1 ]
Riedle, Markus [2 ]
机构
[1] Nicolaus Copernicus Univ, Fac Math & Comp Sci, Torun, Poland
[2] Kings Coll London, Dept Math, London WC2R 2LS, England
基金
英国工程与自然科学研究理事会;
关键词
Cylindrical Levy processes; stochastic integration; decoupled tangent sequence; cylindrical Brownian motion; random measures; LIMIT-THEOREMS; BANACH-SPACES; SUMS;
D O I
10.1214/16-AOP1164
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A cylindrical Levy process does not enjoy a cylindrical version of the semimartingale decomposition which results in the need to develop a completely novel approach to stochastic integration. In this work, we introduce a stochastic integral for random integrands with respect to cylindrical Levy processes in Hilbert spaces. The space of admissible integrands consists of caglad, adapted stochastic processes with values in the space of Hilbert-Schmidt operators. Neither the integrands nor the integrator is required to satisfy any moment or boundedness condition. The integral process is characterised as an adapted, Hilbert space valued semimartingale with cadlag trajectories.
引用
收藏
页码:4273 / 4306
页数:34
相关论文
共 27 条
[1]  
[Anonymous], 1988, PROBAB MATH STAT
[2]  
[Anonymous], 1987, Probability Distributions on Banach Spaces
[3]   Cylindrical Levy processes in Banach spaces [J].
Applebaum, David ;
Riedle, Markus .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2010, 101 :697-726
[4]   LIMIT-THEOREMS FOR RANDOM SUMS OF DEPENDENT D-DIMENSIONAL RANDOM VECTORS [J].
BESKA, M ;
KLOPOTOWSKI, A ;
SLOMINSKI, L .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1982, 61 (01) :43-57
[5]   Regularity of Ornstein-Uhlenbeck Processes Driven by a L,vy White Noise [J].
Brzezniak, Zdzisaw ;
Zabczyk, Jerzy .
POTENTIAL ANALYSIS, 2010, 32 (02) :153-188
[6]  
Daletskii Y.L., 1967, Russ. Math. Surv, V22, P1, DOI [10.1070/RM1967v022n04ABEH003769, DOI 10.1070/RM1967V022N04ABEH003769]
[7]  
De la Pena V. H, 1999, DECOUPLING DEPENDENC, DOI 10.1007/978-1-4612-0537-1
[8]  
GAVEAU B., 1973, C R ACAD SCI PAR A B, V276, pA617
[9]   PRINCIPLE OF CONDITIONING IN LIMIT-THEOREMS FOR SUMS OF RANDOM-VARIABLES [J].
JAKUBOWSKI, A .
ANNALS OF PROBABILITY, 1986, 14 (03) :902-915
[10]   Radonification of cylindrical semimartingales by a single Hilbert-Schmidt operator [J].
Jakubowski, A ;
Kwapien, S ;
De Fitte, PR ;
Rosinski, J .
INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2002, 5 (03) :429-440