MiMiC: A Novel Framework for Multiscale Modeling in Computational Chemistry

被引:43
作者
Olsen, Jogvan Magnus Haugaard [1 ]
Bolnykh, Viacheslav [2 ,3 ,4 ,5 ]
Meloni, Simone [6 ]
Ippoliti, Emiliano [4 ,5 ]
Bircher, Martin P. [7 ]
Carloni, Paolo [2 ,4 ,5 ,8 ]
Rothlisberger, Ursula [7 ]
机构
[1] UiT Arctic Univ Norway, Dept Chem, Hylleraas Ctr Quantum Mol Sci, N-9037 Tromso, Norway
[2] Rhein Westfal TH Aachen, Dept Phys, D-52056 Aachen, Germany
[3] Cyprus Inst, CaSToRC, CY-2121 Nicosia, Cyprus
[4] Forschungszentrum Julich, Inst Adv Simulat IAS 5, D-52425 Julich, Germany
[5] Forschungszentrum Julich, Inst Neurosci & Med INM 9, D-52425 Julich, Germany
[6] Sapienza Univ Rome, Dept Mech & Aerosp Engn, I-00184 Rome, Italy
[7] Ecole Polytech Fed Lausanne, Lab Computat Chem & Biochem, CH-1015 Lausanne, Switzerland
[8] Forschungszentrum Julich, Inst Neurosci & Med INM 11, D-52425 Julich, Germany
基金
欧盟地平线“2020”; 瑞士国家科学基金会;
关键词
MOLECULAR-DYNAMICS SIMULATIONS; DENSITY-FUNCTIONAL CALCULATIONS; AB-INITIO; PLANE-WAVES; PROTEIN; APPROXIMATION; OPTIMIZATION; MECHANISM; EFFICIENT; GROMACS;
D O I
10.1021/acs.jctc.9b00093
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present a flexible and efficient framework for multiscale modeling in computational chemistry (MiMiC). It is based on a multiple-program multiple-data (MPMD) model with loosely coupled programs. Fast data exchange between programs is achieved through the use of MPI intercommunicators. This allows exploiting the existing parallelization strategies used by the coupled programs while maintaining a high degree of flexibility. MiMiC has been used in a new electrostatic embedding quantum mechanics/molecular mechanics (QM/MM) implementation coupling the highly efficient CPMD and GROMACS programs, but it can also be extended to use other programs. The framework can also be utilized to extend the partitioning of the system into several domains that can be treated using different models, such as models based on wave function or density functional theory as well as coarse-graining and continuum models. The new QM/MM implementation treats long-range electrostatic QM-MM interactions through the multipoles of the QM subsystem which substantially reduces the computational cost without loss of accuracy compared to an exact treatment. This enables QM/MM molecular dynamics (MD) simulations of very large systems.
引用
收藏
页码:3810 / 3823
页数:14
相关论文
共 50 条
[31]   Computational modeling of strained alkenes: Choosing the right computational model [J].
Kekisev, Ott ;
Burk, Peeter ;
Jarv, Jaak .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2017, 117 (22)
[32]   A novel multiscale computational methodology for numerical material testing based on finite element polycrystal model [J].
Oya, Tetsuo ;
Araki, Naoyuki .
MATERIALS TODAY COMMUNICATIONS, 2022, 33
[33]   MLatom 3: A Platform for Machine Learning-Enhanced Computational Chemistry Simulations and Workflows [J].
Dral, Pavlo O. ;
Ge, Fuchun ;
Hou, Yi-Fan ;
Zheng, Peikun ;
Chen, Yuxinxin ;
Barbatti, Mario ;
Isayev, Olexandr ;
Wang, Cheng ;
Xue, Bao-Xin ;
Pinheiro Jr, Max ;
Su, Yuming ;
Dai, Yiheng ;
Chen, Yangtao ;
Zhang, Lina ;
Zhang, Shuang ;
Ullah, Arif ;
Zhang, Quanhao ;
Ou, Yanchi .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2024, 20 (03) :1193-1213
[34]   Theoretical and Computational Chemistry [J].
Meuwly, Markus .
CHIMIA, 2010, 64 (12) :867-870
[35]   Multiscale quantum algorithms for quantum chemistry [J].
Ma, Huan ;
Liu, Jie ;
Shang, Honghui ;
Fan, Yi ;
Li, Zhenyu ;
Yang, Jinlong .
CHEMICAL SCIENCE, 2023, 14 (12) :3190-3205
[36]   A computational framework for finite element modeling of traveling loads on bridges in dynamic regime [J].
De Risi, Raffaele .
COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING, 2022, 37 (04) :470-484
[37]   Transuranic Computational Chemistry [J].
Kaltsoyannis, Nikolas .
CHEMISTRY-A EUROPEAN JOURNAL, 2018, 24 (12) :2815-2825
[38]   Recent Computational Chemistry [J].
Onishi, Taku .
INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2015 (ICCMSE 2015), 2015, 1702
[39]   Computational bioinorganic chemistry [J].
Deeth, RJ .
PRINCIPLES AND APPLICATIONS OF DENSITY IN INORGANIC CHEMISTRY II, 2004, 113 :37-69
[40]   Multiscale modeling of doping processes in advanced semiconductor devices [J].
Zographos, Nikolas ;
Zechner, Christoph ;
Martin-Bragado, Ignacio ;
Lee, Kyuho ;
Oh, Yong-Seog .
MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2017, 62 :49-61