Measure concentration through non-Lipschitz observables and functional inequalities

被引:1
作者
Guillin, Arnaud [1 ]
Joulin, Alderic [2 ]
机构
[1] Univ Blaise Pascal, Clermont Ferrand II, France
[2] Univ Toulouse, Inst Math Toulouse, Toulouse, France
关键词
Concentration; invariant measure; reversible Markov process; Lyapunov condition; functional inequality; carre du champ; diffusion process; jump process; LOGARITHMIC SOBOLEV INEQUALITIES; SPECTRAL GAP; DEVIATION INEQUALITIES; POINCARE INEQUALITY; ENTROPY DECAY; INFORMATION;
D O I
10.1214/EJP.v18-2425
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Non-Gaussian concentration estimates are obtained for invariant probability measures of reversible Markov processes. We show that the functional inequalities approach combined with a suitable Lyapunov condition allows us to circumvent the classical Lipschitz assumption of the observables. Our method is general and offers an unified treatment of diffusions and pure-jump Markov processes on unbounded spaces.
引用
收藏
页码:1 / 26
页数:26
相关论文
共 42 条
[1]  
Aida S, 1994, MATH RES LETT, V1, P75
[2]  
[Anonymous], 2005, THESIS GEORGIA I TEC
[3]   A simple proof of the Poincare inequality for a large class of probability measures including the log-concave case [J].
Bakry, Dominique ;
Barthe, Franck ;
Cattiaux, Patrick ;
Guillin, Arnaud .
ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2008, 13 :60-66
[5]   The spectral gap for a Glauber-type dynamics in a continuous gas [J].
Bertini, L ;
Cancrini, N ;
Cesi, F .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2002, 38 (01) :91-108
[6]   Poincare's inequalities and Talagrand's concentration phenomenon for the exponential distribution [J].
Bobkov, S ;
Ledoux, M .
PROBABILITY THEORY AND RELATED FIELDS, 1997, 107 (03) :383-400
[7]   CONCENTRATION OF THE INFORMATION IN DATA WITH LOG-CONCAVE DISTRIBUTIONS [J].
Bobkov, Sergey ;
Madiman, Mokshay .
ANNALS OF PROBABILITY, 2011, 39 (04) :1528-1543
[8]   Modified logarithmic Sobolev inequalities in discrete settings [J].
Bobkov, Sergey G. ;
Tetali, Prasad .
JOURNAL OF THEORETICAL PROBABILITY, 2006, 19 (02) :289-336
[9]   WEIGHTED POINCARE-TYPE INEQUALITIES FOR CAUCHY AND OTHER CONVEX MEASURES [J].
Bobkov, Sergey G. ;
Ledoux, Michel .
ANNALS OF PROBABILITY, 2009, 37 (02) :403-427
[10]  
Bobkov SG, 2003, LECT NOTES MATH, V1807, P37