Maximal variation and missing values for componentwise support vector machines

被引:0
|
作者
Pelckmans, K [1 ]
Suykens, JAK [1 ]
De Moor, B [1 ]
机构
[1] Katholieke Univ Leuven, ESAT, SCD, SISTA, B-3001 Heverlee, Belgium
来源
PROCEEDINGS OF THE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), VOLS 1-5 | 2005年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes primal-dual kernel machine classifiers based on worst-case analysis of a finite set of observations including missing values of the inputs. Key ingredients are the use of a componentwise Support Vector Machine (cSVM) and an empirical measure of maximal variation of the components to bound the influence of the component which can not be evaluated due to missing values. A regularization term based on the L, norm of the maximal variation is used to obtain a mechanism for structure detection in that context. An efficient implemtation using the hierarchical kernel machines framework is elaborated.
引用
收藏
页码:2814 / 2819
页数:6
相关论文
共 50 条
  • [1] Componentwise support vector machines for structure detection
    Pelckmans, K
    Suykens, JAK
    De Moor, B
    ARTIFICIAL NEURAL NETWORKS: FORMAL MODELS AND THEIR APPLICATIONS - ICANN 2005, PT 2, PROCEEDINGS, 2005, 3697 : 643 - 648
  • [2] MULTICLASS SUPPORT VECTOR MACHINES FOR CLASSIFICATION OF ECG DATA WITH MISSING VALUES
    Hejazi, Maryamsadat
    Al-Haddad, S. A. R.
    Singh, Yashwant Prasad
    Hashim, Shaiful Jahari
    Aziz, Ahmad Fazli Abdul
    APPLIED ARTIFICIAL INTELLIGENCE, 2015, 29 (07) : 660 - 674
  • [3] Maximal Discrepancy for Support Vector Machines
    Anguita, Davide
    Ghio, Alessandro
    Ridella, Sandro
    NEUROCOMPUTING, 2011, 74 (09) : 1436 - 1443
  • [4] Constructing support vector machines with missing data
    Stewart, Thomas G.
    Zeng, Donglin
    Wu, Michael C.
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2018, 10 (04)
  • [5] Feature Selection in Survival Least Squares Support Vector Machines with Maximal Variation Constraints
    Van Belle, V.
    Pelckmans, K.
    Suykens, J. A. K.
    Van Huffel, S.
    BIO-INSPIRED SYSTEMS: COMPUTATIONAL AND AMBIENT INTELLIGENCE, PT 1, 2009, 5517 : 65 - 72
  • [6] EXPECTED KERNEL FOR MISSING FEATURES IN SUPPORT VECTOR MACHINES
    Anderson, Hyrum S.
    Gupta, Maya R.
    2011 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2011, : 285 - 288
  • [7] Handling missing values in support vector machine classifiers
    Pelckmans, K
    De Brabanter, J
    Suykens, JAK
    De Moor, B
    NEURAL NETWORKS, 2005, 18 (5-6) : 684 - 692
  • [8] Sparse additive support vector machines in bounded variation space
    Wang, Yue
    Lian, Heng
    INFORMATION AND INFERENCE-A JOURNAL OF THE IMA, 2024, 13 (01)
  • [10] Modelling method with missing values based on clustering and support vector regression
    Wang, Ling
    Fu, Dongmei
    Li, Qing
    Mu, Zhichun
    JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS, 2010, 21 (01) : 142 - 147