Gauss sums over some matrix groups

被引:7
作者
Li, Yan [2 ]
Hu, Su [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Math Sci, Taejon 305701, South Korea
[2] China Agr Univ, Dept Appl Math, Beijing 100083, Peoples R China
基金
中国国家自然科学基金; 新加坡国家研究基金会;
关键词
General linear group; Special linear group; Finite fields; Gauss sum; Kloosterman sum; SPECIAL LINEAR-GROUPS; EXPONENTIAL-SUMS; SYMPLECTIC GROUPS;
D O I
10.1016/j.jnt.2012.06.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note, we give explicit expressions of Gauss sums for general (resp. special) linear groups over finite fields, which involve classical Gauss sums (resp, Kloosterman sums). The key ingredient is averaging such sums over Borel subgroups, i.e., the groups of upper triangular matrices. As applications, we count the number of invertible matrices of zero-trace over finite fields and we also improve two bounds of Ferguson, Hoffman, Luca, Ostafe and Shparlinski in [R. Ferguson, C. Hoffman, F. Luca, A. Ostafe, I.E. Shparlinski, Some additive combinatorics problems in matrix rings, Rev. Mat. Complut. 23 (2010) 501-513]. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:2967 / 2976
页数:10
相关论文
共 22 条
[1]   Identities arising from Gauss sums for finite classical groups [J].
Chae, Hi-joon ;
Kim, Dae San .
JOURNAL OF NUMBER THEORY, 2008, 128 (07) :2010-2024
[2]  
Eichler M, 1938, J REINE ANGEW MATH, V179, P227
[3]   Some additive combinatorics problems in matrix rings [J].
Ferguson, Ron ;
Hoffman, Corneliu ;
Luca, Florian ;
Ostafe, Alina ;
Shparlinski, Igor E. .
REVISTA MATEMATICA COMPLUTENSE, 2010, 23 (02) :501-513
[4]  
Fulman J., ARXIVMATH0105172V3
[5]  
Hu S., ARXIV11033928
[6]  
Kim D.S., 1995, NUMBER THEORY GEOMET, P97
[7]  
Kim D.S., 1998, NUMBER THEORY RELATE, V15, P119
[8]   Codes associated with special linear groups and power moments of multi-dimensional Kloosterman sums [J].
Kim, Dae San .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2011, 190 (01) :61-76
[9]  
Kim DS, 1997, ACTA ARITH, V82, P331
[10]   Gauss sums for general and special linear groups over a finite field [J].
Kim, DS .
ARCHIV DER MATHEMATIK, 1997, 69 (04) :297-304