Shape optimization problems on metric measure spaces

被引:7
作者
Buttazzo, Giuseppe [1 ]
Velichkov, Bozhidar [2 ]
机构
[1] Univ Pisa, Dipartimento Matemat, I-56127 Pisa, Italy
[2] Scuola Normale Super Pisa, I-56126 Pisa, Italy
关键词
Shape optimization; Metric spaces; Capacity; Eigenvalues; Sobolev spaces; DIRICHLET PROBLEMS; VECTOR-FIELDS;
D O I
10.1016/j.jfa.2012.09.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider shape optimization problems of the form min{J(Omega): Omega subset of X, m(Omega) <= c}, where X is a metric measure space and J is a suitable shape functional. We adapt the notions of gamma-convergence and weak-gamma convergence to this new general abstract setting to prove the existence of an optimal domain. Several examples are pointed out and discussed. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 33
页数:33
相关论文
共 19 条
[1]  
[Anonymous], PREPRINT
[2]  
Bao D., 2000, GRAD TEXTS MATH
[3]  
Bucur D., 2005, Prog. Nonlinear Differ. Equ. Appl, V65
[4]   SHAPE OPTIMIZATION FOR DIRICHLET PROBLEMS - RELAXED SOLUTIONS AND OPTIMALITY CONDITIONS [J].
BUTTAZZO, G ;
DALMASO, G .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 23 (02) :531-535
[5]   AN EXISTENCE RESULT FOR A CLASS OF SHAPE OPTIMIZATION PROBLEMS [J].
BUTTAZZO, G ;
DALMASO, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1993, 122 (02) :183-195
[6]   SHAPE OPTIMIZATION FOR DIRICHLET PROBLEMS - RELAXED FORMULATION AND OPTIMALITY CONDITIONS [J].
BUTTAZZO, G ;
DALMASO, G .
APPLIED MATHEMATICS AND OPTIMIZATION, 1991, 23 (01) :17-49
[7]   Spectral optimization problems [J].
Buttazzo, Giuseppe .
REVISTA MATEMATICA COMPLUTENSE, 2011, 24 (02) :277-322
[8]   Differentiability of Lipschitz functions on metric measure spaces [J].
Cheeger, J .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1999, 9 (03) :428-517
[9]  
Da Prato G, 2002, Second Order Partial Differential Equations in Hilbert Spaces
[10]  
DALMASO G, 1994, MATH MOD METH APPL S, V4, P373