The perimeter inequality under Steiner symmetrization:: Cases of equality

被引:57
作者
Chlebík, M
Cianchi, A
Fusco, N
机构
[1] Max Planck Inst Math Nat Wissensch, Leipzig, Germany
[2] Univ Florence, I-50121 Florence, Italy
[3] Univ Naples Federico II, I-80138 Naples, Italy
关键词
D O I
10.4007/annals.2005.162.525
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Steiner symmetrization is known not to increase perimeter of sets in R-n. The sets whose perimeter is preserved under this symmetrization are characterized in the present paper.
引用
收藏
页码:525 / 555
页数:31
相关论文
共 21 条
[1]  
Ambrosio L., 2000, OX MATH M, pxviii, DOI 10.1017/S0024609301309281
[2]  
[Anonymous], 1993, GEOM FUNCT ANAL
[3]  
[Anonymous], 1974, ACTA MATH-DJURSHOLM, DOI [DOI 10.1007/BF02392144, 10.1007/BF02392144]
[4]  
BAERNSTEIN A, 1994, SYM MATH, V35, P47
[5]   INEQUALITIES IN FOURIER-ANALYSIS [J].
BECKNER, W .
ANNALS OF MATHEMATICS, 1975, 102 (01) :159-182
[6]   An approach to symmetrization via polarization [J].
Brock, F ;
Solynin, AY .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (04) :1759-1796
[7]  
BROTHERS JE, 1988, J REINE ANGEW MATH, V384, P153
[8]   Cases of equality in the Riesz rearrangement inequality [J].
Burchard, A .
ANNALS OF MATHEMATICS, 1996, 143 (03) :499-527
[9]   On the case of equality in the Brunn-Minkowski inequality for capacity [J].
Caffarelli, LA ;
Jerison, D ;
Lieb, EH .
ADVANCES IN MATHEMATICS, 1996, 117 (02) :193-207
[10]   EXTREMALS OF FUNCTIONALS WITH COMPETING SYMMETRIES [J].
CARLEN, EA ;
LOSS, M .
JOURNAL OF FUNCTIONAL ANALYSIS, 1990, 88 (02) :437-456