Time-optimal decompositions in SU(2)

被引:9
作者
Billig, Yuly [1 ]
机构
[1] Carleton Univ, Sch Math & Stat, Ottawa, ON K1S 5B6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Quantum control; Time-optimal decompositions; Controllability of vector fields;
D O I
10.1007/s11128-012-0447-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A connected Lie group G is generated by its two 1-parametric subgroups exp(tX), exp(tY) if and only if the Lie algebra of G is generated by {X, Y}. We consider decompositions of elements of G into a product of such exponentials with times t > 0 and study the problem of minimizing the total time of the decompositions for a fixed element of G. We solve this problem for the group SU (2) and describe the structure of the time-optimal decompositions.
引用
收藏
页码:955 / 971
页数:17
相关论文
共 8 条
[1]  
Bourbaki Nicolas, 1989, Elements of Mathematics, V2nd, pCH1, DOI DOI 10.1007/978-3-642-61701-0
[2]   UNIVERSALITY IN QUANTUM COMPUTATION [J].
DEUTSCH, D ;
BARENCO, A ;
EKERT, A .
PROCEEDINGS OF THE ROYAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1995, 449 (1937) :669-677
[3]  
Euler L., 1776, NOVI COMMENTARII ACA, V20, P189
[4]  
Jurdjevic V., 1997, Cambridge Studies in Advanced Mathematics, V51
[5]   Time optimal control in spin systems [J].
Khaneja, N. ;
Brockett, R. ;
Glaser, S.J. .
Physical Review A. Atomic, Molecular, and Optical Physics, 2001, 63 (03) :323081-320811
[6]  
KNAPP A. W., 1996, PROGR MATH, V140
[7]   ALMOST ANY QUANTUM LOGIC GATE IS UNIVERSAL [J].
LLOYD, S .
PHYSICAL REVIEW LETTERS, 1995, 75 (02) :346-349
[8]   Chemistry - Whither the future of controlling quantum phenomena? [J].
Rabitz, H ;
de Vivie-Riedle, R ;
Motzkus, M ;
Kompa, K .
SCIENCE, 2000, 288 (5467) :824-828