Numerical quadrature computation of the Macdonald function for complex orders

被引:4
作者
Gautschi, W [1 ]
机构
[1] Purdue Univ, Dept Comp Sci, W Lafayette, IN 47907 USA
关键词
Macdonald function; modified Bessel function; complex order; Gauss quadrature approximation; Matlab software;
D O I
10.1007/s10543-005-0020-5
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The use of Gaussian quadrature formulae is explored for the computation of the Macdonald function (modified Bessel function) of complex orders and positive arguments. It is shown that for arguments larger than one, Gaussian quadrature applied to the integral representation of this function is a viable approach, provided the (nonclassical) weight function is suitably chosen. In combination with Gauss-Legendre quadrature the approach works also for arguments smaller than one. For very small arguments, power series can be used. A Matlab routine is provided that implements this approach.
引用
收藏
页码:593 / 603
页数:11
相关论文
共 10 条
[1]  
Abramowitz M, 1964, NBS APPL MATH SERIES, V55
[2]  
Ditkin VA, 1974, INTEGRAL TRANSFORMS
[3]   Algorithms and codes for the Macdonald function: recent progress and comparisons [J].
Fabijonas, BR ;
Lozier, DW ;
Rappoport, JM .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 161 (01) :179-192
[4]  
Gautschi W., 2004, Orthogonal Polynomials: Computation and Approximation, DOI DOI 10.1093/OSO/9780198506720.001.0001
[5]   Algorithm 831: Modified Bessel functions of imaginary order and positive argument [J].
Gil, A ;
Segura, J ;
Temme, NM .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2004, 30 (02) :159-164
[6]   Computing special functions by using quadrature rules [J].
Gil, A ;
Segura, J ;
Temme, NM .
NUMERICAL ALGORITHMS, 2003, 33 (1-4) :265-275
[7]  
LEBEDEV NN, 1976, PROBLEMS MATH PHYS, P68
[8]  
Rappoport J.M., 1979, Tables of Modified Bessel Functions
[9]  
WONG R, 1989, COMPUTER SCI SCI COM
[10]  
ZURINA MI, 1967, TABLES MODIFIED BESS