THE ALGEBRAIC REPRESENTATION FOR HIGH ORDER SOLUTION OF SASA-SATSUMA EQUATION

被引:23
作者
Ling, Liming [1 ]
机构
[1] South China Univ Technol, Sch Math, Guangzhou 510640, Guangdong, Peoples R China
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S | 2016年 / 9卷 / 06期
基金
中国国家自然科学基金;
关键词
Darboux transformation; high order solution; Sasa-Satsuma equation; NONLINEAR SCHRODINGER-EQUATION; SOLITON-SOLUTIONS; DARBOUX TRANSFORMATION; DARK SOLITON; WAVES; INTEGRABILITY;
D O I
10.3934/dcdss.2016081
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we reestablish the elementary Darboux transformation for Sasa-Satsuma equation with the aid of loop group method. Furthermore, the generalized Darboux transformation is given with the limit technique. As direct applications, we give the single solitonic solutions for the focusing and defocusing case. The general high order solution formulas with the determinant form are obtained through generalized DT and the formal series method.
引用
收藏
页码:1975 / 2010
页数:36
相关论文
共 34 条
[1]   Sasa-Satsuma equation: Soliton on a background and its limiting cases [J].
Bandelow, U. ;
Akhmediev, N. .
PHYSICAL REVIEW E, 2012, 86 (02)
[2]   High-Order Soliton Solution of Landau-Lifshitz Equation [J].
Bian, Dongfen ;
Guo, Boling ;
Ling, Liming .
STUDIES IN APPLIED MATHEMATICS, 2015, 134 (02) :181-214
[3]   INTEGRABILITY OF NON-LINEAR HAMILTONIAN-SYSTEMS BY INVERSE SCATTERING METHOD [J].
CHEN, HH ;
LEE, YC ;
LIU, CS .
PHYSICA SCRIPTA, 1979, 20 (3-4) :490-492
[4]   Twisted rogue-wave pairs in the Sasa-Satsuma equation [J].
Chen, Shihua .
PHYSICAL REVIEW E, 2013, 88 (02)
[5]   Soliton solutions, Liouville integrability and gauge equivalence of Sasa Satsuma equation [J].
Ghosh, S ;
Kundu, A ;
Nandy, S .
JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (04) :1993-2000
[6]   Sasa-Satsuma higher-order nonlinear Schrodinger equation and its bilinearization and multisoliton solutions [J].
Gilson, C ;
Hietarinta, J ;
Nimmo, J ;
Ohta, Y .
PHYSICAL REVIEW E, 2003, 68 (01) :10-166141
[7]  
Gu C., 2004, Darboux Transformations in Integrable Systems: Theory and Their Applications to Geometry
[8]   Rogue Wave, Breathers and Bright-Dark-Rogue Solutions for the Coupled Schrodinger Equations [J].
Guo Bo-Ling ;
Ling Li-Ming .
CHINESE PHYSICS LETTERS, 2011, 28 (11)
[9]   High-Order Solutions and Generalized Darboux Transformations of Derivative Nonlinear Schrodinger Equations [J].
Guo, Boling ;
Ling, Liming ;
Liu, Q. P. .
STUDIES IN APPLIED MATHEMATICS, 2013, 130 (04) :317-344
[10]   Nonlinear Schrodinger equation: Generalized Darboux transformation and rogue wave solutions [J].
Guo, Boling ;
Ling, Liming ;
Liu, Q. P. .
PHYSICAL REVIEW E, 2012, 85 (02)