Effect of preparation method on the hydrogen production from methanol steam reforming over binary Cu/ZrO2 catalysts

被引:164
作者
Yao, CZ
Wang, LC
Liu, YM
Wu, GS
Cao, Y [1 ]
Dai, WL
He, HY
Fan, KN
机构
[1] Fudan Univ, Dept Chem, Shanghai 200433, Peoples R China
[2] Fudan Univ, Shanghai Key Lab Mol Catalysis & Innovat Mat, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金;
关键词
hydrogen production; steam reforming of methanol; binary Cu/ZrO2 catalysts; oxalate gel-coprecipitation;
D O I
10.1016/j.apcata.2005.09.002
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Several methods (impregnation, oxalate gel-coprecipitation and conventional aqueous coprecipitation) have been comparatively examined for the preparation of binary Cu/ZrO2 catalysts for the catalytic production of hydrogen by steam reforming of methanol (SRM). A variety of techniques including N-2 adsorption, XRD, N2O chemisorption, XRD, H-2-TPR, and XPS were used to characterize the physical and chemical properties of the as-obtained catalysts. The results show that the preparation method significantly affects the component dispersion, microstructural properties and the resulting catalytic performance with respect to methanol conversion, H-2 production and CO concentration. The catalyst with higher specific copper surface area and component dispersion shows higher activity for methanol conversion at lower temperature. The best Cu/ZrO2 catalyst has been prepared by an oxalate gel-coprecipitation method, which shows much higher catalytic activity and enhanced long-term stability in the SRM reaction as compared to the catalysts prepared by conventional aqueous-coprecipitation and impregnation methods. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:151 / 158
页数:8
相关论文
共 33 条
[1]   Production of hydrogen from methanol over binary Cu/ZnO catalysts - Part II. Catalytic activity and reaction pathways [J].
Agrell, J ;
Boutonnet, M ;
Fierro, JLG .
APPLIED CATALYSIS A-GENERAL, 2003, 253 (01) :213-223
[2]   Steam reforming of methanol over a Cu/ZnO/Al2O3 catalyst:: a kinetic analysis and strategies for suppression of CO formation [J].
Agrell, J ;
Birgersson, H ;
Boutonnet, M .
JOURNAL OF POWER SOURCES, 2002, 106 (1-2) :249-257
[3]   Production of hydrogen from methanol over Cu/ZnO catalysts promoted by ZrO2 and Al2O3 [J].
Agrell, J ;
Birgersson, H ;
Boutonnet, M ;
Melián-Cabrera, I ;
Navarro, RM ;
Fierro, JLG .
JOURNAL OF CATALYSIS, 2003, 219 (02) :389-403
[4]   Methanol reforming for fuel-cell applications: development of zirconia-containing Cu-Zn-Al catalysts [J].
Breen, JP ;
Ross, JRH .
CATALYSIS TODAY, 1999, 51 (3-4) :521-533
[5]  
BUSSCHE KMV, 1996, J CATAL, V161, P1
[6]   Steam reforming of methanol over highly active Pd/ZnO catalyst [J].
Chin, YH ;
Dagle, R ;
Hu, JL ;
Dohnalkova, AC ;
Wang, Y .
CATALYSIS TODAY, 2002, 77 (1-2) :79-88
[7]   Catalytic production of hydrogen from methanol [J].
de Wild, PJ ;
Verhaak, MJFM .
CATALYSIS TODAY, 2000, 60 (1-2) :3-10
[8]   Yttria-stabilized zirconia supported copper oxide catalyst .1. Effect of oxygen vacancy of support on copper oxide reduction [J].
Dow, WP ;
Wang, YP ;
Huang, TJ .
JOURNAL OF CATALYSIS, 1996, 160 (02) :155-170
[9]   ON THE DETERMINATION OF COPPER SURFACE-AREA BY REACTION WITH NITROUS-OXIDE [J].
EVANS, JW ;
WAINWRIGHT, MS ;
BRIDGEWATER, AJ ;
YOUNG, DJ .
APPLIED CATALYSIS, 1983, 7 (01) :75-83
[10]  
FIERRO G, 1991, APPL CATAL, V76, P117