Clustering Spatiotemporal Data: An Augmented Fuzzy C-Means

被引:75
作者
Izakian, Hesam [1 ]
Pedrycz, Witold [1 ,2 ,3 ]
Jamal, Iqbal [4 ]
机构
[1] Univ Alberta, Dept Elect & Comp Engn, Edmonton, AB T6G 2V4, Canada
[2] King Abdulaziz Univ, Dept Elect & Comp Engn, Fac Engn, Jeddah 21589, Saudi Arabia
[3] Polish Acad Sci, Syst Res Inst, PL-00716 Warsaw, Poland
[4] AQL Management Consulting Inc, Edmonton, AB T6J 2R8, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Fuzzy clustering; reconstruction and prediction criteria; spatiotemporal data; weather data; TIME-SERIES;
D O I
10.1109/TFUZZ.2012.2233479
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In spatiotemporal data commonly encountered in geographical systems, biomedical signals, and the like, each datum is composed of features comprising a spatial component and a temporal part. Clustering of data of this nature poses challenges, especially in terms of a suitable treatment of the spatial and temporal components of the data. In this study, proceeding with the objective function-based clustering (such as, e.g., fuzzy C-means), we revisit and augment the algorithm to make it applicable to spatiotemporal data. An augmented distance function is discussed, and the resulting clustering algorithm is provided. Two optimization criteria, i.e., a reconstruction error and a prediction error, are introduced and used as a vehicle to optimize the performance of the clustering method. Experimental results obtained for synthetic and real-world data are reported.
引用
收藏
页码:855 / 868
页数:14
相关论文
共 62 条
[1]  
Ankerst M, 1999, SIGMOD RECORD, VOL 28, NO 2 - JUNE 1999, P49
[2]  
[Anonymous], INT J UNCERTAINTY FU
[3]  
[Anonymous], Pattern Recognition with Fuzzy Objective Function Algorithms
[4]   Modeling Fuzziness Measures for Best Wavelet Selection [J].
Arafat, Samer M. Adnan ;
Skubic, Marjorie .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2008, 16 (05) :1259-1270
[5]  
Berndt D. J., 1994, AAAIWS 94 P 3 INT C, P359
[6]  
Box G.E.P., 1976, Time Series Analysis: Forecasting and Control
[7]  
Cai Y., 2004, Proceedings of the 2004 ACM SIGMOD International Conference on Management of Data, SIGMOD '04, P599, DOI [DOI 10.1145/1007568.1007636, 10.1145/1007568.1007636]
[8]   A periodogram-based metric for time series classification [J].
Caiado, Jorge ;
Crato, Nuno ;
Pena, Daniel .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 50 (10) :2668-2684
[9]   Segmentation of M-FISH Images for Improved Classification of Chromosomes With an Adaptive Fuzzy C-means Clustering Algorithm [J].
Cao, Hongbao ;
Deng, Hong-Wen ;
Wang, Yu-Ping .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2012, 20 (01) :1-8
[10]   Locally adaptive dimensionality reduction for indexing large time series databases [J].
Chakrabarti, K ;
Keogh, E ;
Mehrotra, S ;
Pazzani, M .
ACM TRANSACTIONS ON DATABASE SYSTEMS, 2002, 27 (02) :188-228