On superintegrable symmetry-breaking potentials in N-dimensional Euclidean space

被引:29
作者
Kalnins, EG [1 ]
Williams, GC
Miller, W
Pogosyan, GS
机构
[1] Univ Waikato, Dept Math & Stat, Hamilton, New Zealand
[2] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
[3] Univ Nacl Autonoma Mexico, Ctr Ciencias Fis, Cuernavaca 62251, Morelos, Mexico
[4] Joint Inst Nucl Res, Theoret Phys Lab, Dubna 141980, Moscow Region, Russia
[5] Yerevan State Univ, Int Ctr Adv Studies, Yerevan 375049, Armenia
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2002年 / 35卷 / 22期
关键词
D O I
10.1088/0305-4470/35/22/308
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We give a graphical prescription for obtaining and characterizing all separable coordinates for which the Schrodinger equation admits separable solutions for one of the superintegrable potentials V = 1/2Sigma(l=1)(n)[k(l)(2) - 1/4/x(l)(2) + omega(2)x(l)(2)] + 2omega(2)x(n+1)(2) or V = 1/2(2alpha/rootx(1)(2)+...+x(n+1)(2) + Sigma(l=1)(n)1/4 - k(l)(2)/x(l)(2)). Here x(n+1) is a distinguished Cartesian variable. The algebra of second-order symmetries of the resulting Schrodinger equation is given and, for the first potential, the closure relations of the corresponding quadratic algebra. These potentials are particularly interesting because they occur in all dimensions n greater than or equal to 1, the separation of variables problem is highly nontrivial for them, and many other potentials are limiting cases.
引用
收藏
页码:4755 / 4773
页数:19
相关论文
共 18 条
  • [1] LIE THEORY AND SEPARATION OF VARIABLES .7. HARMONIC-OSCILLATOR IN ELLIPTIC COORDINATES AND INCE POLYNOMIALS
    BOYER, CP
    KALNINS, EG
    MILLER, W
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1975, 16 (03) : 512 - 517
  • [2] STACKEL-EQUIVALENT INTEGRABLE HAMILTONIAN-SYSTEMS
    BOYER, CP
    KALNINS, EG
    MILLER, W
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1986, 17 (04) : 778 - 797
  • [3] SUPERINTEGRABILITY IN CLASSICAL MECHANICS
    EVANS, NW
    [J]. PHYSICAL REVIEW A, 1990, 41 (10): : 5666 - 5676
  • [4] GROUP-THEORY OF THE SMORODINSKY-WINTERNITZ SYSTEM
    EVANS, NW
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (12) : 3369 - 3375
  • [5] FRIS J, 1967, SOV J NUCL PHYS, V4, P444
  • [6] Hakobyan YM, 1998, PHYS ATOM NUCL+, V61, P1762
  • [7] KALLIES W, 1994, P INT WORKSH SYMM ME, V1, P206
  • [8] Kalnins E.G., 1986, SEPARATION VARIABLES
  • [9] Completeness of multiseparable superintegrability in E2,C
    Kalnins, EG
    Miller, W
    Pogosyan, GS
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (22): : 4105 - 4120
  • [10] Completeness of multiseparable superintegrability on the complex 2-sphere
    Kalnins, EG
    Miller, W
    Pogosyan, GS
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (38): : 6791 - 6806