HOPF-BIFURCATION THEOREM AND STABILITY FOR THE MAGNETO-HYDRODYNAMICS EQUATIONS

被引:1
作者
Yan, Weiping [1 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
关键词
Magneto-hydrodynamics equations; periodic solution; Hopf bifurcation; stability; NAVIER-STOKES EQUATIONS; NONLINEAR INSTABILITY; PERIODIC SOLUTIONS;
D O I
10.12775/TMNA.2015.055
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is devoted to the study of the dynamical behavior for the 3D viscous Magneto-hydrodynamics equations. We first prove that this system under smooth external forces possesses time dependent periodic solutions, bifurcating from a steady solution. If the time periodic solution is smooth, then the linear stability of the time periodic solution implies nonlinear stability is obtained in L-p for all p is an element of (3, infinity).
引用
收藏
页码:471 / 493
页数:23
相关论文
共 23 条
[1]  
[Anonymous], 1991, J. Nonlinear Sci, DOI DOI 10.1007/BF01209150
[2]  
[Anonymous], 1993, Geometric Theory of Semilinear Parabolic Equations, DOI DOI 10.1007/BFB0089647
[3]   Hopf bifurcation and exchange of stability in diffusive media [J].
Brand, T ;
Kunze, M ;
Schneider, G ;
Seelbach, T .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2004, 171 (02) :263-296
[4]   Time dependent periodic Navier-Stokes flows on a two-dimensional torus [J].
Chen, ZM ;
Price, WG .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 179 (03) :577-597
[5]   Time-periodic solutions for a generalized Boussinesq model with Neumann boundary conditions for temperature [J].
Climent-Ezquerra, Blanca ;
Guillen-Gonzalez, Francisco ;
Rojas-Medar, Marko Antonio .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2007, 463 (2085) :2153-2164
[6]   HOPF BIFURCATION THEOREM IN INFINITE DIMENSIONS [J].
CRANDALL, MG ;
RABINOWITZ, PH .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1977, 67 (01) :53-72
[7]   Nonlinear instability in an ideal fluid [J].
Friedlander, S ;
Strauss, W ;
Vishik, M .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1997, 14 (02) :187-209
[8]   Nonlinear instability for the Navier-Stokes equations [J].
Friedlander, S ;
Pavlovic, N ;
Shvydkoy, R .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 264 (02) :335-347
[10]   ANALYTICITY OF THE SEMIGROUP GENERATED BY THE STOKES OPERATOR IN LR SPACES [J].
GIGA, Y .
MATHEMATISCHE ZEITSCHRIFT, 1981, 178 (03) :297-329