Controlling the diameter and magnetic properties of carbon-encapsulated iron nanoparticles produced by carbon arc discharge

被引:53
作者
Bystrzejewski, M. [1 ]
Labedz, O. [1 ]
Kaszuwara, W. [2 ]
Huczko, A. [1 ]
Lange, H. [1 ]
机构
[1] Univ Warsaw, Dept Chem, PL-02093 Warsaw, Poland
[2] Warsaw Univ Technol, Fac Mat Sci & Engn, PL-02507 Warsaw, Poland
关键词
Carbon-encapsulated magnetic nanoparticles; Carbon arc plasma; Diameter distribution; Magnetic properties; BIOMEDICAL APPLICATIONS; COMBUSTION SYNTHESIS; RAMAN-SPECTROSCOPY; CCVD SYNTHESIS; SURFACE; FUNCTIONALIZATION; NANOMAGNETS; PARTICLES; STABILITY; CHEMISTRY;
D O I
10.1016/j.powtec.2013.04.052
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The systematic studies on synthesis of carbon-encapsulated iron nanoparticles by a carbon arc route are presented. The influence of several operational parameters (Fe content in the anode (7.5-65.0 at.%), discharge current (30-80 A), and preparation procedure of the anode) on the yield, selectivity, morphology, diameter distribution, phase composition, graphitization degree and magnetic properties of the products is investigated. It is found that Fe content in the anode is a parameter that entirely controls the yield, diameter distribution, graphitization degree and magnetic properties of carbon-encapsulated iron nanoparticles. This parameter also influences the process selectivity. Two other factors, i.e. the discharge current and preparation procedure of the anode, slightly affect the product morphology, diameter distribution and graphitization degree. The phase composition neither depends on the Fe content in the anode nor the discharge current. It is also found that the studied synthesis process has high reproducibility and has a potential to be scaled up. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:7 / 15
页数:9
相关论文
共 34 条
[1]  
[Anonymous], INTRO MAGNETIC MAT
[2]   Raman spectroscopy of graphitic foams [J].
Barros, EB ;
Demir, NS ;
Souza, AG ;
Mendes, J ;
Jorio, A ;
Dresselhaus, G ;
Dresselhaus, MS .
PHYSICAL REVIEW B, 2005, 71 (16)
[3]   The Use of Magnetic Nanoparticles in Analytical Chemistry [J].
Beveridge, Jacob S. ;
Stephens, Jason R. ;
Williams, Mary Elizabeth .
ANNUAL REVIEW OF ANALYTICAL CHEMISTRY, VOL 4, 2011, 4 :251-273
[4]   Varying the size and magnetic properties of carbon-encapsulated cobalt particles [J].
Bonard, JM ;
Seraphin, S ;
Wegrowe, JE ;
Jiao, J ;
Châtelain, A .
CHEMICAL PHYSICS LETTERS, 2001, 343 (3-4) :251-257
[5]   Structure and magnetic properties of carbon encapsulated Fe nanoparticles obtained by arc plasma and combustion synthesis [J].
Borysiuk, J. ;
Grabias, A. ;
Szczytko, J. ;
Bystrzejewski, M. ;
Twardowski, A. ;
Lange, H. .
CARBON, 2008, 46 (13) :1693-1701
[6]   Large scale continuous synthesis of carbon-encapsulated magnetic nanoparticles [J].
Bystrzejewski, M. ;
Huczko, A. ;
Lange, H. ;
Baranowski, P. ;
Cota-Sanchez, G. ;
Soucy, G. ;
Szczytko, J. ;
Twardowski, A. .
NANOTECHNOLOGY, 2007, 18 (14)
[7]  
Bystrzejewski M, 2007, POL J CHEM, V81, P1219
[8]   Thermal stability of carbon-encapsulated Fe-Nd-B nanoparticles [J].
Bystrzejewski, M. ;
Cudzilo, S. ;
Huczko, A. ;
Lange, H. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2006, 423 (1-2) :74-76
[9]   Synthesis of carbon-encapsulated iron nanoparticles by pyrolysis of iron citrate and poly(vinyl alcohol): a critical evaluation of yield and selectivity [J].
Bystrzejewski, M. ;
Klingeler, R. ;
Gemming, T. ;
Buechner, B. ;
Ruemmeli, M. H. .
NANOTECHNOLOGY, 2011, 22 (31)
[10]   Tailoring phase composition in carbon-encapsulated iron nanoparticles [J].
Bystrzejewski, M. ;
Grabias, A. .
MATERIALS CHARACTERIZATION, 2011, 62 (01) :152-156