Atomically Dispersed Cobalt Trifunctional Electrocatalysts with Tailored Coordination Environment for Flexible Rechargeable Zn-Air Battery and Self-Driven Water Splitting

被引:314
作者
Zhang, Zheye [1 ]
Zhao, Xiaoxu [2 ]
Xi, Shibo [3 ]
Zhang, Lili [3 ]
Chen, Zhongxin [4 ,5 ]
Zeng, Zhiping [1 ]
Huang, Ming [1 ]
Yang, Hongbin [1 ]
Liu, Bin [1 ]
Pennycook, Stephen J. [2 ]
Chen, Peng [1 ]
机构
[1] Nanyang Technol Univ, Sch Chem & Biomed Engn, 70 Nanyang Dr, Singapore 637457, Singapore
[2] Natl Univ Singapore, Dept Mat Sci & Engn, 9 Engn Dr 1, Singapore 117575, Singapore
[3] ASTAR, Inst Chem & Engn Sci, 1 Pesek Rd, Singapore 627833, Singapore
[4] Natl Univ Singapore, Dept Chem, 3 Sci Dr 3, Singapore 117543, Singapore
[5] Natl Univ Singapore, Ctr Adv 2D Mat CA2DM, 3 Sci Dr 3, Singapore 117543, Singapore
关键词
coordination environment; self‐ driven water splitting; single‐ atom catalysis; trifunctional electrocatalysts; Zn– air batteries; SINGLE-ATOM CATALYSTS; CARBON; IDENTIFICATION; PERFORMANCE; ELECTRODE;
D O I
10.1002/aenm.202002896
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Designing multifunctional catalysts with high activity, stability, and low-cost for energy storage and conversion is a significant challenge. Herein, a trifunctional electrocatalyst is synthesized by anchoring individually dispersed Co atoms on N and S codoped hollow carbon spheres (CoSA/N,S-HCS), which exhibits outstanding catalytic activity and stability for the oxygen reduction reaction, oxygen evolution reaction, and hydrogen evolution reaction. When equipped in liquid or flexible solid-state rechargeable Zn-air batteries, CoSA/N,S-HCS endows them with high power and energy density as well as excellent long-term cycling stability, outperforming benchmark batteries based on a commercial Pt/C + RuO2 dual catalyst system. Furthermore, a self-driven water splitting system powered by flexible Zn-air batteries is demonstrated using CoSA/N,S-HCS as the sole catalyst, giving a high H-2 evolution rate of 184 mmol h(-1). The state-of-art experimental characterizations and theoretical calculations reveal synergistic cooperation between atomically dispersed Co-N-4 active sites, nearby electron-donating S dopants, and the unique carbon support to single-atom catalysts (SACs). This work demonstrates a general strategy to design various multifunctional SAC systems with a tailored coordination environment.
引用
收藏
页数:11
相关论文
共 63 条
[1]  
[Anonymous], 2017, CELL DEATH DIS
[2]   Identification of single-atom active sites in carbon-based cobalt catalysts during electrocatalytic hydrogen evolution [J].
Cao, Linlin ;
Luo, Qiquan ;
Liu, Wei ;
Lin, Yue ;
Liu, Xiaokang ;
Cao, Yuanjie ;
Zhang, Wei ;
Wu, Yuen ;
Yang, Jinlong ;
Yao, Tao ;
Wei, Shiqiang .
NATURE CATALYSIS, 2019, 2 (02) :134-141
[3]   Iron phthalocyanine with coordination induced electronic localization to boost oxygen reduction reaction [J].
Chen, Kejun ;
Liu, Kang ;
An, Pengda ;
Li, Huangjingwei ;
Lin, Yiyang ;
Hu, Junhua ;
Jia, Chuankun ;
Fu, Junwei ;
Li, Hongmei ;
Liu, Hui ;
Lin, Zhang ;
Li, Wenzhang ;
Li, Jiahang ;
Lu, Ying-Rui ;
Chan, Ting-Shan ;
Zhang, Ning ;
Liu, Min .
NATURE COMMUNICATIONS, 2020, 11 (01)
[4]   Enhanced oxygen reduction with single-atomic-site iron catalysts for a zinc-air battery and hydrogen-air fuel cell [J].
Chen, Yuanjun ;
Ji, Shufang ;
Zhao, Shu ;
Chen, Wenxing ;
Dong, Juncai ;
Cheong, Weng-Chon ;
Shen, Rongan ;
Wen, Xiaodong ;
Zheng, Lirong ;
Rykov, Alexandre I. ;
Cai, Shichang ;
Tang, Haolin ;
Zhuang, Zhongbin ;
Chen, Chen ;
Peng, Qing ;
Wang, Dingsheng ;
Li, Yadong .
NATURE COMMUNICATIONS, 2018, 9
[5]   Single-Atom Catalysts: Synthetic Strategies and Electrochemical Applications [J].
Chen, Yuanjun ;
Ji, Shufang ;
Chen, Chen ;
Peng, Qing ;
Wang, Dingsheng ;
Li, Yadong .
JOULE, 2018, 2 (07) :1242-1264
[6]   Durability of platinum-based fuel cell electrocatalysts: Dissolution of bulk and nanoscale platinum [J].
Cherevko, Serhiy ;
Kulyk, Nadiia ;
Mayrhofer, Karl J. J. .
NANO ENERGY, 2016, 29 :275-298
[7]   Electrocatalyst approaches and challenges for automotive fuel cells [J].
Debe, Mark K. .
NATURE, 2012, 486 (7401) :43-51
[8]   Rational Design of Transition Metal-Based Materials for Highly Efficient Electrocatalysis [J].
Dou, Shuo ;
Wang, Xin ;
Wang, Shuangyin .
SMALL METHODS, 2019, 3 (01)
[9]   An efficient bifunctional two-component catalyst for oxygen reduction and oxygen evolution in reversible fuel cells, electrolyzers and rechargeable air electrodes [J].
Dresp, Soeren ;
Luo, Fang ;
Schmack, Roman ;
Kuehl, Stefanie ;
Gliech, Manuel ;
Strasser, Peter .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (06) :2020-2024
[10]   Low-PGM and PGM-Free Catalysts for Proton Exchange Membrane Fuel Cells: Stability Challenges and Material Solutions [J].
Du, Lei ;
Prabhakaran, Venkateshkumar ;
Xie, Xiaohong ;
Park, Sehkyu ;
Wang, Yong ;
Shao, Yuyan .
ADVANCED MATERIALS, 2021, 33 (06)