Robust estimation for semi-functional linear regression models

被引:11
作者
Boente, Graciela [1 ,2 ]
Salibian-Barrera, Matias [3 ]
Vena, Pablo [1 ,2 ]
机构
[1] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, CONICET, Buenos Aires, DF, Argentina
[2] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Inst Calculo, CONICET, Buenos Aires, DF, Argentina
[3] Univ British Columbia, Dept Stat, Vancouver, BC, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
B-splines; Functional data analysis; Partial linear models; Robust estimation; SPLINE ESTIMATORS;
D O I
10.1016/j.csda.2020.107041
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Semi-functional linear regression models postulate a linear relationship between a scalar response and a functional covariate, and also include a non-parametric component involving a univariate explanatory variable. It is of practical importance to obtain estimators for these models that are robust against high-leverage outliers, which are generally difficult to identify and may cause serious damage to least squares and Huber-type M-estimators. For that reason, robust estimators for semi-functional linear regression models are constructed combining B-splines to approximate both the functional regression parameter and the nonparametric component with robust regression estimators based on a bounded loss function and a preliminary residual scale estimator. Consistency and rates of convergence for the proposed estimators are derived under mild regularity conditions. The reported numerical experiments show the advantage of the proposed methodology over the classical least squares and Huber-type M-estimators for finite samples. The analysis of real examples illustrates that the robust estimators provide better predictions for non-outlying points than the classical ones, and that when potential outliers are removed from the training and test sets both methods behave very similarly. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:17
相关论文
共 26 条
[1]   Semi-functional partial linear regression [J].
Aneiros-Perez, German ;
Vieu, Philippe .
STATISTICS & PROBABILITY LETTERS, 2006, 76 (11) :1102-1110
[2]   Robust estimators in semi-functional partial linear regression models [J].
Boente, Graciela ;
Vahnovan, Alejandra .
JOURNAL OF MULTIVARIATE ANALYSIS, 2017, 154 :59-84
[3]  
Cardot H, 2003, STAT SINICA, V13, P571
[4]  
Febrero-Bande M, 2012, J STAT SOFTW, V51, P1
[5]  
Ferraty F., 2006, SPR S STAT
[6]  
Hardle W., 2000, Partially Linear Models, DOI 10.1007/978-3-642-57700-0
[7]  
Hardle Wolfgang., 2004, NONPARAMETRIC SEMIPA, DOI [DOI 10.1007/978-3-642-17146-8, 10.1007/978-3-642-17146-8]
[8]   Monotone B-spline smoothing [J].
He, XM ;
Shi, P .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1998, 93 (442) :643-650
[9]   Estimation in a semiparametric model for longitudinal data with unspecified dependence structure [J].
He, XM ;
Zhu, ZY ;
Fung, WK .
BIOMETRIKA, 2002, 89 (03) :579-590
[10]   Sieve M-estimator for a semi-functional linear model [J].
Huang LeLe ;
Wang HuiWen ;
Cui HengJian ;
Wang SiYang .
SCIENCE CHINA-MATHEMATICS, 2015, 58 (11) :2421-2434