Development of a coupled wavelet transform and evolutionary Levenberg-Marquardt neural networks for hydrological process modeling
被引:25
作者:
Abbaszadeh, Peyman
论文数: 0引用数: 0
h-index: 0
机构:
Portland State Univ, Remote Sensing & Water Resources Lab, Dept Civil & Environm Engn, Portland, OR 97207 USAPortland State Univ, Remote Sensing & Water Resources Lab, Dept Civil & Environm Engn, Portland, OR 97207 USA
Abbaszadeh, Peyman
[1
]
Alipour, Atieh
论文数: 0引用数: 0
h-index: 0
机构:
Portland State Univ, Dept Math & Stat, Portland, OR 97207 USAPortland State Univ, Remote Sensing & Water Resources Lab, Dept Civil & Environm Engn, Portland, OR 97207 USA
Alipour, Atieh
[2
]
Asadi, Shahrokh
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tehran, Fac Engn, Farabi Campus, Tehran, IranPortland State Univ, Remote Sensing & Water Resources Lab, Dept Civil & Environm Engn, Portland, OR 97207 USA
Asadi, Shahrokh
[3
]
机构:
[1] Portland State Univ, Remote Sensing & Water Resources Lab, Dept Civil & Environm Engn, Portland, OR 97207 USA
[2] Portland State Univ, Dept Math & Stat, Portland, OR 97207 USA
[3] Univ Tehran, Fac Engn, Farabi Campus, Tehran, Iran
This research aims to present a general framework by which the most appropriate wavelet parameters including mother wavelet, vanishing moment, and decomposition level can be chosen for a joint wavelet transform and machine learning model. This study is organized in 2 parts: the first part presents an evolutionary Levenberg-Marquardt neural network (ELMNN) model as the most effective machine learning configuration, and the second part describes how the wavelet transform can be effectively embedded with the developed ELMNN model. In this research, the rainfall and runoff time series data of 2 distinct watersheds at 2 different time scales (daily and monthly) were used to build the proposed hybrid wavelet transform and ELMNN model. The conclusions of this study showed that the Daubechies wavelet more than other wavelet families is capable to extract the informative features of hydrologic series. The vanishing moment and decomposition level of this mother wavelet should be selected based on the watershed behavior and the time resolution of rainfall and runoff time series, respectively. The verification results for both watersheds at daily and monthly time scales indicated root mean square error, peak value criterion, low value criterion, and Kling-Gupta efficiency as about 0.017, 0.021, 0.023, and 0.91, respectively.
机构:
De Lin Inst Technol 1, Dept Business Adm, 1 Ln 380,Qingyun Rd, New Taipei 23654, TaiwanDe Lin Inst Technol 1, Dept Business Adm, 1 Ln 380,Qingyun Rd, New Taipei 23654, Taiwan
Chen, Zhen-Yao
;
Kuo, R. J.
论文数: 0引用数: 0
h-index: 0
机构:
Natl Taiwan Univ Sci & Technol, Dept Ind Management, Taipei, TaiwanDe Lin Inst Technol 1, Dept Business Adm, 1 Ln 380,Qingyun Rd, New Taipei 23654, Taiwan
机构:
Univ Teknologi Malaysia, Dept Math, Fac Sci, Johor Baharu, MalaysiaUniv Teknologi Malaysia, Dept Math, Fac Sci, Johor Baharu, Malaysia
Ismail, S.
;
Shabri, A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Teknologi Malaysia, Dept Software Engn, Fac Comp Sci & Informat Syst, Johor Baharu, MalaysiaUniv Teknologi Malaysia, Dept Math, Fac Sci, Johor Baharu, Malaysia
Shabri, A.
;
Samsudin, R.
论文数: 0引用数: 0
h-index: 0
机构:Univ Teknologi Malaysia, Dept Math, Fac Sci, Johor Baharu, Malaysia
机构:
De Lin Inst Technol 1, Dept Business Adm, 1 Ln 380,Qingyun Rd, New Taipei 23654, TaiwanDe Lin Inst Technol 1, Dept Business Adm, 1 Ln 380,Qingyun Rd, New Taipei 23654, Taiwan
Chen, Zhen-Yao
;
Kuo, R. J.
论文数: 0引用数: 0
h-index: 0
机构:
Natl Taiwan Univ Sci & Technol, Dept Ind Management, Taipei, TaiwanDe Lin Inst Technol 1, Dept Business Adm, 1 Ln 380,Qingyun Rd, New Taipei 23654, Taiwan
机构:
Univ Teknologi Malaysia, Dept Math, Fac Sci, Johor Baharu, MalaysiaUniv Teknologi Malaysia, Dept Math, Fac Sci, Johor Baharu, Malaysia
Ismail, S.
;
Shabri, A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Teknologi Malaysia, Dept Software Engn, Fac Comp Sci & Informat Syst, Johor Baharu, MalaysiaUniv Teknologi Malaysia, Dept Math, Fac Sci, Johor Baharu, Malaysia
Shabri, A.
;
Samsudin, R.
论文数: 0引用数: 0
h-index: 0
机构:Univ Teknologi Malaysia, Dept Math, Fac Sci, Johor Baharu, Malaysia