Determinantal representations of singular hypersurfaces in Pn

被引:21
作者
Kerner, Dmitry [1 ,2 ]
Vinnikov, Victor [1 ]
机构
[1] Ben Gurion Univ Negev, Dept Math, IL-84105 Beer Sheva, Israel
[2] Univ Toronto, Dept Math, Toronto, ON M5S 1A1, Canada
基金
以色列科学基金会;
关键词
Determinantal hypersurfaces; Arithmetically Cohen-Macaulay sheaves; Hyperbolic polynomials; THETA-CHARACTERISTICS; BUNDLES; POLYNOMIALS; INEQUALITY; MODULES; THEOREM;
D O I
10.1016/j.aim.2012.06.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A (global) determinantal representation of projective hypersurface X subset of P-n is a matrix whose entries are linear forms in homogeneous coordinates and whose determinant defines the hypersurface. We study the properties of such representations for singular (possibly reducible or non-reduced) hypersurfaces. In particular, we obtain the decomposability criteria for determinantal representations of globally reducible hypersurfaces. Further, we classify the determinantal representations in terms of the corresponding kernel sheaves on X. Finally, we extend the results to the case of symmetric/self-adjoint representations, with implications to hyperbolic polynomials and the generalized Lax conjecture. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:1619 / 1654
页数:36
相关论文
共 56 条
[1]   EQUATION OF A PLANE CURVE [J].
ARBARELLO, E ;
SERNESI, E .
DUKE MATHEMATICAL JOURNAL, 1979, 46 (02) :469-485
[2]  
Arbarello E., 1985, GEOMETRY ALGEBRAIC C, V267, DOI 10.1007/978-1-4757-5323-3
[3]  
BACKELIN J, 1988, LECT NOTES MATH, V1352, P1
[4]  
Ball JA, 2003, IMA VOL MATH APPL, V134, P63
[5]   Zero-pole interpolation for meromorphic matrix functions on an algebraic curve and transfer functions of 2D systems [J].
Ball, JA ;
Vinnikov, V .
ACTA APPLICANDAE MATHEMATICAE, 1996, 45 (03) :239-316
[6]   MODULI OF VECTOR BUNDLES ON PROJECTIVE PLANE [J].
BARTH, W .
INVENTIONES MATHEMATICAE, 1977, 42 :63-91
[7]   Hyperbolic polynomials and convex analysis [J].
Bauschke, HH ;
Güler, O ;
Lewis, AS ;
Sendov, HS .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2001, 53 (03) :470-488
[8]  
Beauville A, 2000, MICH MATH J, V48, P39
[9]  
Brundu M., 1998, TRANSFORM GROUPS, V3, P209
[10]   Determinantal representations of smooth cubic surfaces [J].
Buckley, Anita ;
Kosir, Tomaz .
GEOMETRIAE DEDICATA, 2007, 125 (01) :115-140