Dynamic formation of stable current-driven plasma jets

被引:20
作者
Underwood, Thomas C. [1 ]
Loebner, Keith T. K. [1 ]
Miller, Victor A. [2 ]
Cappelli, Mark A. [1 ]
机构
[1] Stanford Univ, High Temp Gasdynam Lab, Stanford, CA 94305 USA
[2] SeekOps Inc, Austin, TX 78745 USA
关键词
FLOW; DEFLAGRATION; INSTABILITY; COLLIMATION; MODE;
D O I
10.1038/s41598-019-39827-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Instabilities play a prominent role in determining the inherent structure and properties of magnetized plasma jets spanning both laboratory and astrophysical settings. The manner in which prominent unstable modes dynamically evolve remains key to understanding plasma behavior and control. In astrophysical phenomena, self-similar jets are observed to propagate over vast distances while avoiding breakup caused by unstable mode growth. However, the production of stable dense plasma jets in the laboratory has been limited by the onset of unstable modes that restrict jet lifetime, collimation, and scalability. In this work, we visualize the formation of stable laboratory-generated, dense, super-magnetosonic plasma jets in real time, and we identify an underlying mechanism that contributes to this behavior. The current-driven plasma jets generated in our experiments form a flowing Z-pinch, which is generally unstable to the m=1 kink instability. Our results indicate that a stable dense plasma jet can be maintained for timescales over which a steady pinch current can be sustained, even at levels which would otherwise lead to rapid unstable mode growth and resultant pinch disassembly.
引用
收藏
页数:9
相关论文
共 34 条
[1]   Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field [J].
Albertazzi, B. ;
Ciardi, A. ;
Nakatsutsumi, M. ;
Vinci, T. ;
Beard, J. ;
Bonito, R. ;
Billette, J. ;
Borghesi, M. ;
Burkley, Z. ;
Chen, S. N. ;
Cowan, T. E. ;
Herrmannsdoerfer, T. ;
Higginson, D. P. ;
Kroll, F. ;
Pikuz, S. A. ;
Naughton, K. ;
Romagnani, L. ;
Riconda, C. ;
Revet, G. ;
Riquier, R. ;
Schlenvoigt, H. -P. ;
Skobelev, I. Yu. ;
Faenov, A. Ya. ;
Soloviev, A. ;
Huarte-Espinosa, M. ;
Frank, A. ;
Portugall, O. ;
Pepin, H. ;
Fuchs, J. .
SCIENCE, 2014, 346 (6207) :325-328
[2]   NEW FINITE-ELEMENT APPROACH TO NORMAL MODE ANALYSIS IN MAGNETOHYDRODYNAMICS [J].
APPERT, K ;
BERGER, D ;
GRUBER, R ;
RAPPAZ, J .
JOURNAL OF COMPUTATIONAL PHYSICS, 1975, 18 (03) :284-299
[3]   PINCH RESEARCH [J].
BICKERTON, RJ .
NUCLEAR FUSION, 1980, 20 (09) :1072-1075
[4]  
Blandford R.D., 1988, Perspectives in Fluid Mechanics, P14
[5]   Two-dimensional axisymmetric magnetohydrodynamic analysis of blow-by in a coaxial plasma accelerator [J].
Cassibry, J. T. ;
Thio, Y. C. F. ;
Wu, S. T. .
PHYSICS OF PLASMAS, 2006, 13 (05)
[6]   Estimates of confinement time and energy gain for plasma liner driven magnetoinertial fusion using an analytic self-similar converging shock model [J].
Cassibry, J. T. ;
Cortez, R. J. ;
Hsu, S. C. ;
Witherspoon, F. D. .
PHYSICS OF PLASMAS, 2009, 16 (11) :112707
[7]   EFFECT OF TOROIDAL PLASMA-FLOW AND FLOW SHEAR ON GLOBAL MAGNETOHYDRODYNAMIC MHD MODES [J].
CHU, MS ;
GREENE, JM ;
JENSEN, TH ;
MILLER, RL ;
BONDESON, A ;
JOHNSON, RW ;
MAUEL, ME .
PHYSICS OF PLASMAS, 1995, 2 (06) :2236-2241
[8]   PLASMA DEFLAGRATION AND PROPERTIES OF A COAXIAL PLASMA DEFLAGRATION GUN [J].
CHENG, DY .
NUCLEAR FUSION, 1970, 10 (03) :305-+
[9]   ON HYDROMAGNETIC STABILITY OF STATIONARY EQUILIBRIA [J].
FRIEMAN, E ;
ROTENBERG, M .
REVIEWS OF MODERN PHYSICS, 1960, 32 (04) :898-902
[10]  
Goedbloed J. P., 2010, Advanced magnetohydrodynamics: with applications to laboratory and astrophysical plasmas