On (n, k)-quasiparanormal operators

被引:28
作者
Yuan, Jiangtao [1 ,2 ]
Ji, Guoxing [1 ]
机构
[1] Shaanxi Normal Univ, Coll Math & Informat Sci, Xian 710062, Peoples R China
[2] Henan Polytech Univ, Sch Math & Informat Sci, Jiaozuo 454000, Henan Province, Peoples R China
基金
中国博士后科学基金;
关键词
paranormal operator; SVEP; finite ascent; isolated spectral point; Riesz idempotent; BISHOPS PROPERTY BETA; WEYLS THEOREM;
D O I
10.4064/sm209-3-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let T be a bounded linear operator on a complex Hilbert space H. For positive integers n and k, an operator T is called (n, k)-quasiparanormal if parallel to T1+n(T(k)x)parallel to(1/(1+n))parallel to T(k)x parallel to(n/(1+n)) >= parallel to T(T(k)x)parallel to for x is an element of H. The class of (n, k)-quasiparanormal operators contains the classes of n-paranormal and k-quasiparanormal operators. We consider some properties of (n, k)-quasiparanormal operators: (1) inclusion relations and examples; (2) a matrix representation and SVEP (single valued extension property); (3) ascent and Bishop's property (beta); (4) quasinilpotent part and Riesz idempotents for k-quasiparanormal operators.
引用
收藏
页码:289 / 301
页数:13
相关论文
共 24 条
[1]  
Aiena P., 2004, Fredholm and Local Spectral Theory, with Application to Multipliers
[2]   Weyl Type Theorems for Left and Right Polaroid Operators [J].
Aiena, Pietro ;
Aponte, Elvis ;
Balzan, Edixon .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2010, 66 (01) :1-20
[3]   Weyl's theorem for algebraically quasi-class A operators [J].
An, Il Ju ;
Han, Young Min .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2008, 62 (01) :1-10
[4]  
CHOURASIA NN, 1980, B AUSTR MATH SOC, V21, P161
[5]  
Conway J. B., 1990, COURSE FUNCTIONAL AN
[6]   Weyl's theorem for algebraically paranormal operators [J].
Curto, RE ;
Han, YM .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2003, 47 (03) :307-314
[8]  
Duggal BP, 2011, OPER MATRICES, V5, P417
[9]  
Furuta T., 1998, SCI MATH, V1, P389
[10]  
Gao FG, 2009, J INEQUAL APPL, DOI 10.1155/2009/921634