Modeling and Bayesian Parameter Estimation for Shape Memory Alloy Bending Actuators

被引:2
作者
Crews, John H. [1 ]
Smith, Ralph C. [1 ]
机构
[1] N Carolina State Univ, Dept Math, Ctr Res Sci Computat, Raleigh, NC 27695 USA
来源
BEHAVIOR AND MECHANICS OF MULTIFUNCTIONAL MATERIALS AND COMPOSITES 2012 | 2012年 / 8342卷
关键词
shape memory alloys; uncertainty quantificiation; markov chain monte carlo; BOOTSTRAP METHODS; ENERGY-MODEL; HYSTERESIS;
D O I
10.1117/12.914792
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this paper, we employ a homogenized energy model (HEM) for shape memory alloy (SMA) bending actuators. Additionally, we utilize a Bayesian method for quantifying parameter uncertainty. The system consists of a SMA wire attached to a flexible beam. As the actuator is heated, the beam bends, providing endoscopic motion. The model parameters are fit to experimental data using an ordinary least-squares approach. The uncertainty in the fit model parameters is then quantified using Markov Chain Monte Carlo (MCMC) methods. The MCMC algorithm provides bounds on the parameters, which will ultimately be used in robust control algorithms. One purpose of the paper is to test the feasibility of the Random Walk Metropolis algorithm, the MCMC method used here.
引用
收藏
页数:11
相关论文
共 28 条
[1]   A tutorial on adaptive MCMC [J].
Andrieu, Christophe ;
Thoms, Johannes .
STATISTICS AND COMPUTING, 2008, 18 (04) :343-373
[2]  
[Anonymous], 2021, Bayesian data analysis
[3]  
[Anonymous], 2005, STAT COMPUTATIONAL I
[4]   An overview of bootstrap methods for estimating and predicting in time series [J].
Cao, R .
TEST, 1999, 8 (01) :95-116
[5]   UNDERSTANDING THE METROPOLIS-HASTINGS ALGORITHM [J].
CHIB, S ;
GREENBERG, E .
AMERICAN STATISTICIAN, 1995, 49 (04) :327-335
[6]  
Crews J., 2011, J INTELLIGENT UNPUB
[7]  
Crews J., 2011, J INTELLIGENT MAT SY
[8]  
Crews J. H, 2011, THESIS N CAROLINA ST
[9]  
De Laurentis Kathryn J, 2002, Technol Health Care, V10, P91
[10]  
Furst S, 2010, ASME 2010 C SMART MA