Modeling an optical magnetometer with electronic circuits - analysis and optimization

被引:5
作者
Wlodarczyk, P. [2 ]
Pustelny, S. [1 ,3 ]
Zachorowski, J. [1 ]
Lipinski, M. [2 ]
机构
[1] Jagiellonian Univ, Inst Phys, PL-30059 Krakow, Poland
[2] AGH Univ Sci & Technol, Dept Elect, PL-30059 Krakow, Poland
[3] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
来源
JOURNAL OF INSTRUMENTATION | 2012年 / 7卷
关键词
Detector modelling and simulations I (interaction of radiation with matter; interaction of photons with matter; interaction of hadrons with matter; etc); Polarimeters; NONLINEAR MAGNETOOPTICAL ROTATION;
D O I
10.1088/1748-0221/7/07/P07015
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Optical magnetometers are currently able to achieve magnetometric sensitivities below 1 fT/Hz(1/2). Although such sensitivities are typically obtained for ultra-low-field measurements, a group of optical magnetometers allows the detection of the fields in a much broader dynamic range without a significant compromise in the sensitivity. A particular example of such a device is the magnetometer exploiting amplitude-modulated nonlinear magneto-optical rotation. It enables measurement of a magnetic field via detection of a polarization state of light traversing a medium subjected to the field. In this paper, an electronic-circuit analogue of such the magnetometer is elaborated. Its operation is investigated with an electronic-circuit design software, which allows to study the "magnetometer" performance as a function of various parameters. The ability to automate operation of the magnetometer and automatically track "magnetic field" is demonstrated. The simulations are verified with experimental results obtained with the true magnetometer operating in one of the investigated arrangements.
引用
收藏
页数:16
相关论文
共 13 条
[1]  
[Anonymous], 2006, Nonlinear Optics
[2]   PRINCIPLES OF OPERATION OF THE RUBIDIUM VAPOR MAGNETOMETER [J].
BLOOM, AL .
APPLIED OPTICS, 1962, 1 (01) :61-68
[3]   Resonant nonlinear magneto-optical effects in atoms [J].
Budker, D ;
Gawlik, W ;
Kimball, DF ;
Rochester, SM ;
Yashchuk, VV ;
Weis, A .
REVIEWS OF MODERN PHYSICS, 2002, 74 (04) :1153-1201
[4]   Sensitive magnetometry based on nonlinear magneto-optical rotation [J].
Budker, D ;
Kimball, DF ;
Rochester, SM ;
Yashchuk, VV ;
Zolotorev, M .
PHYSICAL REVIEW A, 2000, 62 (04) :7
[5]   Nonlinear magneto-optic effects with ultranarrow widths [J].
Budker, D ;
Yashchuk, V ;
Zolotorev, R .
PHYSICAL REVIEW LETTERS, 1998, 81 (26) :5788-5791
[6]   Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer [J].
Dang, H. B. ;
Maloof, A. C. ;
Romalis, M. V. .
APPLIED PHYSICS LETTERS, 2010, 97 (15)
[7]   Advances in magnetometry [J].
Edelstein, Alan .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2007, 19 (16)
[8]   Nonlinear magneto-optical rotation with amplitude modulated light [J].
Gawlik, W ;
Krzemien, L ;
Pustelny, S ;
Sangla, D ;
Zachorowski, J ;
Graf, M ;
Sushkov, AO ;
Budker, D .
APPLIED PHYSICS LETTERS, 2006, 88 (13)
[9]   Magnetometric sensitivity optimization for nonlinear optical rotation with frequency-modulated light: Rubidium D2 line [J].
Kimball, D. F. Jackson ;
Jacome, L. R. ;
Guttikonda, Srikanth ;
Bahr, Eric J. ;
Chan, Lok Fai .
JOURNAL OF APPLIED PHYSICS, 2009, 106 (06)
[10]   Tailoring quantum superpositions with linearly polarized amplitude-modulated light [J].
Pustelny, S. ;
Koczwara, M. ;
Cincio, L. ;
Gawlik, W. .
PHYSICAL REVIEW A, 2011, 83 (04)