A finite element approach to incompressible two-phase flow on manifolds

被引:71
作者
Nitschke, I. [1 ]
Voigt, A. [1 ,2 ]
Wensch, J. [1 ]
机构
[1] Tech Univ Dresden, Inst Wissensch Rechnen, D-01062 Dresden, Germany
[2] Tech Univ Dresden, Ctr Adv Modeling & Simulat, D-01062 Dresden, Germany
关键词
Membranes; Multiphase flow; Navier-Stokes equations; PARTIAL-DIFFERENTIAL-EQUATIONS; PHASE-SEPARATION DYNAMICS; INTERFACE; FLUID; DOMAINS; MOTION;
D O I
10.1017/jfm.2012.317
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A two-phase Newtonian surface fluid is modelled as a surface Cahn-Hilliard-Navier-Stokes equation using a stream function formulation. This allows one to circumvent the subtleties in describing vectorial second-order partial differential equations on curved surfaces and allows for an efficient numerical treatment using parametric finite elements. The approach is validated for various test cases, including a vortex-trapping surface demonstrating the strong interplay of the surface morphology and the flow. Finally the approach is applied to a Rayleigh-Taylor instability and coarsening scenarios on various surfaces.
引用
收藏
页码:418 / 438
页数:21
相关论文
共 50 条
  • [41] Transport of congestion in two-phase compressible/incompressible flows
    Degond, Pierre
    Minakowski, Piotr
    Zatorska, Ewelina
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2018, 42 : 485 - 510
  • [42] Discontinuous Galerkin Method for Incompressible Two-Phase Flows
    Gerstenberger, Janick
    Burbulla, Samuel
    Kroner, Dietmar
    FINITE VOLUMES FOR COMPLEX APPLICATIONS IX-METHODS, THEORETICAL ASPECTS, EXAMPLES, FVCA 9, 2020, 323 : 675 - 683
  • [43] A Two-Phase Flow Approach for the Outlet of Lubricated Line Contacts
    Bruyere, V.
    Fillot, N.
    Morales-Espejel, G. E.
    Vergne, P.
    JOURNAL OF TRIBOLOGY-TRANSACTIONS OF THE ASME, 2012, 134 (04):
  • [44] Two-phase flow in complex geometries: A diffuse domain approach
    Aland, S.
    Lowengrub, J.
    Voigt, A.
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2010, 57 (01): : 77 - 107
  • [45] Computation of dilute two-phase flow in a pump
    Hazra, S. B.
    Steiner, K.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 203 (02) : 444 - 460
  • [46] Two-phase flow in a groovy curved channel
    Okechi, Nnamdi Fidelis
    Asghar, Saleem
    EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2021, 88 : 191 - 198
  • [47] Numerical simulation of two-phase flow of immiscible fluids by the finite element, discontinuous Galerkin and level-set methods
    Eva Bezchlebová
    Vít Dolejší
    Miloslav Feistauer
    Petr Sváček
    Advances in Computational Mathematics, 2019, 45 : 1993 - 2018
  • [48] A zonal grid method for incompressible two-phase flows
    Dabonneville, F.
    Hecht, N.
    Reveillon, J.
    Pinon, G.
    Demoulin, F. X.
    COMPUTERS & FLUIDS, 2019, 180 : 22 - 40
  • [49] Numerical simulation of two-phase flow of immiscible fluids by the finite element, discontinuous Galerkin and level-set methods
    Bezchlebova, Eva
    Dolejsi, Vit
    Feistauer, Miloslav
    Svacek, Petr
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2019, 45 (04) : 1993 - 2018
  • [50] Parallelized numerical modeling of the interaction of a solid object with immiscible incompressible two-phase fluid flow
    Ghasemi, Amirmahdi
    Nikbakhti, R.
    Ghasemi, Amirreza
    Hedayati, Faraz
    Malvandi, Amir
    ENGINEERING COMPUTATIONS, 2017, 34 (03) : 709 - 724