A finite element approach to incompressible two-phase flow on manifolds

被引:71
作者
Nitschke, I. [1 ]
Voigt, A. [1 ,2 ]
Wensch, J. [1 ]
机构
[1] Tech Univ Dresden, Inst Wissensch Rechnen, D-01062 Dresden, Germany
[2] Tech Univ Dresden, Ctr Adv Modeling & Simulat, D-01062 Dresden, Germany
关键词
Membranes; Multiphase flow; Navier-Stokes equations; PARTIAL-DIFFERENTIAL-EQUATIONS; PHASE-SEPARATION DYNAMICS; INTERFACE; FLUID; DOMAINS; MOTION;
D O I
10.1017/jfm.2012.317
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A two-phase Newtonian surface fluid is modelled as a surface Cahn-Hilliard-Navier-Stokes equation using a stream function formulation. This allows one to circumvent the subtleties in describing vectorial second-order partial differential equations on curved surfaces and allows for an efficient numerical treatment using parametric finite elements. The approach is validated for various test cases, including a vortex-trapping surface demonstrating the strong interplay of the surface morphology and the flow. Finally the approach is applied to a Rayleigh-Taylor instability and coarsening scenarios on various surfaces.
引用
收藏
页码:418 / 438
页数:21
相关论文
共 50 条
  • [21] 3D ALE Finite-Element Method for Two-Phase Flows With Phase Change
    Anjos, Gustavo
    Mangiavacchi, Norberto
    Borhani, Navid
    Thome, John R.
    HEAT TRANSFER ENGINEERING, 2014, 35 (05) : 537 - 547
  • [22] A hybrid finite element model for non-isothermal two-phase flow in deformable porous media
    Amiri, S. A. Ghoreishian
    Taheri, E.
    Lavasan, A. A.
    COMPUTERS AND GEOTECHNICS, 2021, 135
  • [23] Two-Phase Incompressible Flow with Dynamic Capillary Pressure in a Heterogeneous Porous Media
    Mostefai, Mohamed Lamine
    Choucha, Abdelbaki
    Boulaaras, Salah
    Alrawashdeh, Mufda
    MATHEMATICS, 2024, 12 (19)
  • [24] A hybrid level set-front tracking finite element approach for fluid-structure interaction and two-phase flow applications
    Basting, Steffen
    Weismann, Martin
    JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 255 : 228 - 244
  • [25] A simple stabilized finite element method for solving two phase compressible-incompressible interface flows
    Billaud, Marie
    Gallice, Gerard
    Nkonga, Boniface
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2011, 200 (9-12) : 1272 - 1290
  • [26] First-order system least squares and the energetic variational approach for two-phase flow
    Adler, J. H.
    Brannick, J.
    Liu, C.
    Manteuffel, T.
    Zikatanov, L.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (17) : 6647 - 6663
  • [27] A locally conservative stabilized continuous Galerkin finite element method for two-phase flow in poroelastic subsurfaces
    Deng, Q.
    Ginting, V.
    McCaskill, B.
    Torsu, P.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 347 : 78 - 98
  • [28] On a Regularized Family of Models for Homogeneous Incompressible Two-Phase Flows
    Gal, Ciprian G.
    Medjo, T. Tachim
    JOURNAL OF NONLINEAR SCIENCE, 2014, 24 (06) : 1033 - 1103
  • [29] Incompressible two-phase flows with an inextensible Newtonian fluid interface
    Reuther, Sebastian
    Voigt, Axel
    JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 322 : 850 - 858
  • [30] Discontinuous Galerkin finite element method for shallow two-phase flows
    Rhebergen, S.
    Bokhove, O.
    van der Vegt, J. J. W.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2009, 198 (5-8) : 819 - 830