ON E-S-SUPPLEMENTED SUBGROUPS OF FINITE GROUPS

被引:4
作者
Li, Changwen [1 ]
Zhang, Xuemei [2 ]
Yi, Xiaolan [3 ]
机构
[1] Jiangsu Normal Univ, Sch Math & Stat, Xuzhou 221116, Peoples R China
[2] Yancheng Inst Technol, Dept Basic Sci, Yancheng 224051, Peoples R China
[3] Zhejiang Sci Tech Univ, Sch Sci, Hangzhou 310018, Peoples R China
关键词
S-permutable; E-S-supplemented; p-nilpotent; QUASINORMALLY EMBEDDED SUBGROUPS; MINIMAL SUBGROUPS; SYLOW SUBGROUPS; PERMUTABLE SUBGROUPS; C-NORMALITY;
D O I
10.4064/cm131-1-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The major aim of the present paper is to strengthen a nice result of Shemetkov and Skiba which gives some conditions under which every non-Frattini G-chief factor of a normal subgroup E of a finite group G is cyclic. As applications, some recent known results are generalized and unified.
引用
收藏
页码:41 / 51
页数:11
相关论文
共 22 条
[1]   On S-quasinormally embedded subgroups of finite groups [J].
Asaad, M ;
Heliel, AA .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2001, 165 (02) :129-135
[2]   Sufficient conditions for supersolubility of finite groups [J].
Ballester-Bolinches, A ;
Pedraza-Aguilera, MC .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1998, 127 (02) :113-118
[3]  
Doerk K., 1992, FINITE SOLVABLE GROU
[4]  
Guo WB, 2000, THEORY CLASSES GROUP
[5]   On c-normal maximal and minimal subgroups of Sylow p-subgroups of finite groups [J].
Guo, XY ;
Shum, KP .
ARCHIV DER MATHEMATIK, 2003, 80 (06) :561-569
[6]  
Kegel O. H., 1962, MATH Z, V78, P205, DOI DOI 10.1007/BF01195169
[7]   A note on a result of Skiba [J].
Li, Changwen .
JOURNAL OF GROUP THEORY, 2012, 15 (03) :385-396
[8]   On Weakly s-permutably Embedded Subgroups of Finite Groups [J].
Li, Yangming ;
Qiao, Shouhong ;
Wang, Yanming .
COMMUNICATIONS IN ALGEBRA, 2009, 37 (03) :1086-1097
[9]   On p-nilpotency of finite groups with some subgroups π-quasinormally embedded [J].
Li, YM ;
Wang, YM ;
Wei, HQ .
ACTA MATHEMATICA HUNGARICA, 2005, 108 (04) :283-298
[10]   On π-quasinormally embedded subgroups of finite group [J].
Li, YM ;
Wang, YM .
JOURNAL OF ALGEBRA, 2004, 281 (01) :109-123