Supersymmetry of Relativistic Hamiltonians for Arbitrary Spin

被引:6
作者
Junker, Georg [1 ,2 ]
机构
[1] European Southern Observ, Karl Schwarzschild Str 2, D-85748 Garching, Germany
[2] Univ Erlangen Nurnberg, Inst Theoret Phys 1, Staudtstr 7, D-91058 Erlangen, Germany
来源
SYMMETRY-BASEL | 2020年 / 12卷 / 10期
关键词
relativistic wave equation; Klein-Gordon equation; Dirac equation; Proca equation; supersymmetry; ELECTROMAGNETIC PROPERTIES; CHARGED-PARTICLES; WAVE-EQUATIONS; QUANTUM-THEORY; MECHANICS; ELECTRON; MOTION; FIELD;
D O I
10.3390/sym12101590
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Hamiltonians describing the relativistic quantum dynamics of a particle with an arbitrary but fixed spin are shown to exhibit a supersymmetric structure when the even and odd elements of the Hamiltonian commute. Here, the supercharges transform between energy eigenstates of positive and negative energy. For such supersymmetric Hamiltonians, an exact Foldy-Wouthuysen transformation exists which brings it into a block-diagonal form separating the positive and negative energy subspaces. The relativistic dynamics of a charged particle in a magnetic field are considered for the case of a scalar (spin-zero) boson obeying the Klein-Gordon equation, a Dirac (spin one-half) fermion and a vector (spin-one) boson characterised by the Proca equation. In the latter case, supersymmetry implies for the Lande g-factor g=2.
引用
收藏
页数:14
相关论文
共 45 条