Some new Volterra-Fredholm type dynamic integral inequalities on time scales

被引:38
作者
Meng, Fanwei [1 ]
Shao, Jing [1 ,2 ]
机构
[1] Qufu Normal Univ, Sch Math Sci, Qufu 273165, Shandong, Peoples R China
[2] Jining Univ, Dept Math, Qufu 273155, Shandong, Peoples R China
关键词
Time scales; Volterra-Fredholm type; Dynamic inequalities; Dynamic equations; DISCRETE INEQUALITIES;
D O I
10.1016/j.amc.2013.08.025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, some new explicit bounds on solutions to a class of new Volterra-Fredholm type dynamic integral inequalities on time scales are established, which can be used as effective tools in the study of certain dynamic equations. Some applications for dynamic equations are also indicated. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:444 / 451
页数:8
相关论文
共 23 条
[1]   Inequalities on time scales: A survey [J].
Agarwal, R ;
Bohner, M ;
Peterson, A .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2001, 4 (04) :535-557
[2]  
Akin-Bohner E., 2005, JIPAM. J. Inequal. Pure Appl. Math, V6, P1
[3]  
[Anonymous], ADV DYN SYST APPL
[4]  
[Anonymous], 2008, J MATH INEQUAL, DOI DOI 10.7153/JMI-02-16
[5]  
Bohner M., 2001, Dynamic Equations on Time Scales: An Introduction with Applications, DOI DOI 10.1007/978-1-4612-0201-1
[6]  
Bohner M., 2003, Advances in Dynamic Equations on Time Scales, DOI DOI 10.1007/978-0-8176-8230-9
[7]   Gronwall-Bellman type nonlinear delay integral inequalities on time scales [J].
Feng, Qinghua ;
Meng, Fanwei ;
Zheng, Bin .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 382 (02) :772-784
[8]  
Hilger S., 1990, Result math, V18, P18, DOI [DOI 10.1007/BF03323153, 10.1007/BF03323153]
[9]   Some nonlinear dynamic inequalities on time scales [J].
Li, Wei Nian ;
Sheng, Weihong .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2007, 117 (04) :545-554
[10]   Some new dynamic inequalities on time scales [J].
Li, Wei Nian .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 319 (02) :802-814