Dopamine release is severely compromised in the R6/2 mouse model of Huntington's disease

被引:107
作者
Johnson, MA
Rajan, V
Miller, CE
Wightman, RM
机构
[1] Univ N Carolina, Dept Chem, Venable & Kenan Labs, Chapel Hill, NC 27599 USA
[2] Univ N Carolina, Ctr Neurosci, Chapel Hill, NC 27599 USA
关键词
cocaine; dopamine; huntingtin; Huntington's disease; methamphetamine; voltammetry;
D O I
10.1111/j.1471-4159.2006.03762.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Recently, alterations in dopamine signaling have been implicated in Huntington's disease. In this work, dopamine release and uptake was measured in striatal slices from the R6/2 transgenic mouse model of Huntington's disease using fast-scan cyclic voltammetry at carbon-fiber microelectrodes. Dopamine release in brain slices from 6-week-old R6/2 mice is substantially reduced (53% of wild type), while dopamine uptake is unaffected. In agreement with this, R6/2 mice injected with the dopamine uptake inhibitor cocaine exhibited a blunted motor activity response (54% of wild type). At 10 weeks of age, an even more dramatic motor activity decrease in response to cocaine injection (21% of wild type) was observed. Moreover, the pre-drug activity of 10-week-old R6/2 mice was significantly reduced (by 37%) compared with 6-week-old R6/2 mice. Striatal dopamine release decreased with age, indicating that progressive alterations in dopaminergic pathways may affect motor activity. The inhibition constants of cocaine and methamphetamine (METH) determined in brain slices differed little between genotype or age group, suggesting that the decreased responses to cocaine and METH arise from compromised dopamine release rather than differences in uptake or drug action. Collectively, these data demonstrate (i) a reduction in the ability of dopamine terminals to release dopamine and (ii) the importance of this attenuation of release on the motor symptoms of Huntington's disease.
引用
收藏
页码:737 / 746
页数:10
相关论文
共 59 条
[1]  
ABERCROMBIE ED, 2002, 19512 SOC NEUR
[2]   THE RELATIONSHIP BETWEEN TRINUCLEOTIDE (CAG) REPEAT LENGTH AND CLINICAL-FEATURES OF HUNTINGTONS-DISEASE [J].
ANDREW, SE ;
GOLDBERG, YP ;
KREMER, B ;
TELENIUS, H ;
THEILMANN, J ;
ADAM, S ;
STARR, E ;
SQUITIERI, F ;
LIN, BY ;
KALCHMAN, MA ;
GRAHAM, RK ;
HAYDEN, MR .
NATURE GENETICS, 1993, 4 (04) :398-403
[3]   Striatal neurochemical changes in transgenic models of Huntington's disease [J].
Ariano, MA ;
Aronin, N ;
Difiglia, M ;
Tagle, DA ;
Sibley, DR ;
Leavitt, BR ;
Hayden, MR ;
Levine, MS .
JOURNAL OF NEUROSCIENCE RESEARCH, 2002, 68 (06) :716-729
[4]   Dopamine D-1 and D-2 receptor gene expression in the striatum in Huntington's disease [J].
Augood, SJ ;
Faull, RLM ;
Emson, PC .
ANNALS OF NEUROLOGY, 1997, 42 (02) :215-221
[5]   Dopamine and cognitive functioning:: Brain imaging findings in Huntington's disease and normal aging [J].
Bäckman, L ;
Farde, L .
SCANDINAVIAN JOURNAL OF PSYCHOLOGY, 2001, 42 (03) :287-296
[6]  
Bates G., 2002, Huntington's Disease, P558
[7]   Subsecond adsorption and desorption of dopamine at carbon-fiber microelectrodes [J].
Bath, BD ;
Michael, DJ ;
Trafton, BJ ;
Joseph, JD ;
Runnels, PL ;
Wightman, RM .
ANALYTICAL CHEMISTRY, 2000, 72 (24) :5994-6002
[8]   Severe deficiencies in dopamine signaling in presymptomatic Huntington's disease mice [J].
Bibb, JA ;
Yan, Z ;
Svenningsson, P ;
Snyder, GL ;
Pieribone, VA ;
Horiuchi, A ;
Nairn, AC ;
Messer, A ;
Greengard, P .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (12) :6809-6814
[9]   DOPAMINE AND NORADRENALINE IN POSTMORTEM BRAIN IN HUNTINGTONS-DISEASE AND SCHIZOPHRENIC ILLNESS [J].
BIRD, ED ;
SPOKES, EGS ;
IVERSEN, LL .
ACTA PSYCHIATRICA SCANDINAVICA, 1980, 61 :63-73
[10]   The R6/2 transgenic mouse model of Huntington's disease develops diabetes due to deficient β-cell mass and exocytosis [J].
Björkqvist, M ;
Fex, M ;
Renström, E ;
Wierup, N ;
Petersén, Å ;
Gil, J ;
Bacos, K ;
Popovic, N ;
Li, JY ;
Sundler, F ;
Brundin, P ;
Mulder, H .
HUMAN MOLECULAR GENETICS, 2005, 14 (05) :565-574