Aldehyde-Alcohol Dehydrogenase and/or Thiolase Overexpression Coupled With CoA Transferase Downregulation Lead to Higher Alcohol Titers and Selectivity in Clostridium acetobutylicum Fermentations

被引:95
|
作者
Sillers, Ryan [1 ]
Al-Hinai, Mohab Ali [2 ]
Papoutsakis, Eleftherios T. [1 ,3 ,4 ]
机构
[1] Northwestern Univ, Dept Biol & Chem Engn, Evanston, IL 60208 USA
[2] Sultan Qaboos Univ, Coll Sci, Dept Biol, Muscat, Oman
[3] Univ Delaware, Dept Chem Engn, Newark, DE 19716 USA
[4] Univ Delaware, Delaware Biotechnol Inst, Newark, DE 19716 USA
基金
美国国家科学基金会;
关键词
Clostridium acetobutylicum; metaboli engineering; thiolase; flux analysis; acetyl-CoA; butyryl-CoA; ATCC; 824; TRANSCRIPTIONAL ANALYSIS; ACETONE FORMATION; BUTANOL STRESS; GENE; EXPRESSION; COENZYME; SOLVENTOGENESIS; INACTIVATION; TOLERANCE;
D O I
10.1002/bit.22058
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Metabolic engineering (ME) of Clostridium acetobutylicum has led to increased solvent (butanol, acetone, and ethanol) production and solvent tolerance, thus demonstrating that further efforts have the potential to create strains of industrial importance. With recently developed ME tools, it is now possible to combine genetic modifications and thus implement more advanced ME strategies. We have previously shown that antisense RNA (asRNA)-based downregulation of CoA transferase (CoAT, the first enzyme in the acetone-formation pathway) results in increased butanol to acetone selectivity, but overall reduced butanol yields and titers. In this study the alcohol/aldehyde dehydrogenase (aad) gene (encoding the bifunctional protein AAD responsible for butanol and ethanol production from butyryl-CoA and acetyl-CoA, respectively) was expressed from the phosphotransbutyrylase (ptb) promoter to enhance butanol formation and selectivity, while CoAT downregulation was used to minimize acetone production. This led to early production of high alcohol (butanol plus ethanol) titers, overall solvent titers of 30 g/L, and a higher alcohol/acetone ratio. Metabolic flux analysis revealed the likely depletion of butyryl-CoA. In order to increase then the flux towards butyryl-CoA, we examined the impact of thiolase (THL, thl) overexpression. THL converts acetyl-CoA to acetoacetyl-CoA) the first step of the pathway from acetyl-CoA to butyryl-CoA, and thus, combining thl overexpression with aad overexpression decreased, as expected, acetate and ethanol production while increasing acetone and butyrate formation. thl overexpression in strains with asRNA CoAT downregulation did not significantly alter product formation thus suggesting that a more complex metabolic engineering strategy is necessary to enhance the intracellular butyryl-CoA pool and reduce the acetyl-CoA pool in order to achieve improved butanol titers and selectivity. Biotechnol. Bioeng. 2009;102: 38-49. (C) 2008 Wiley Periodicals, Inc.
引用
收藏
页码:38 / 49
页数:12
相关论文
empty
未找到相关数据