Stability properties of multi-stage nonlinear model predictive control

被引:26
作者
Lucia, Sergio [1 ,2 ]
Subramanian, Sankaranarayanan [3 ]
Limon, Daniel [4 ]
Engell, Sebastian [3 ]
机构
[1] Tech Univ Berlin, Internet Things Smart Bldg, Einsteinufer 17, D-10587 Berlin, Germany
[2] Einstein Ctr Digital Future, Einsteinufer 17, D-10587 Berlin, Germany
[3] Tech Univ Dortmund, Proc Dynam & Operat Grp, Emil Figgestr 70, D-44227 Dortmund, Germany
[4] Escuela Super Ingn, Dept Ingn Sistemas & Automat, Avda Descubrimientos S-N, Seville 41092, Spain
关键词
Robust control; Model-based control; Stability; Optimization; TO-STATE STABILITY; SYSTEMS; MPC; INPUT; ROBUSTNESS; DESIGN;
D O I
10.1016/j.sysconle.2020.104743
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper discusses the stability properties of a robust nonlinear model predictive control (NMPC) scheme that is based on a multi-stage optimization formulation. The use of a scenario tree to represent the uncertainty makes it possible to formulate a closed-loop robust approach with recourse which improves the open-loop approach in terms of performance and domain of attraction. We show that a straightforward formulation of a multi-stage NMPC scheme does not guarantee Input-to-State stability (ISS) in a deterministic setting, in contrast to the results that one gets using stochastic stability concepts. Since for many applications deterministic stability guarantees are desired, we provide an alternative formulation to achieve deterministic ISS and recursive feasibility guarantees for the case of discrete values of the uncertainty. The design and the performance of the proposed schemes are illustrated by simulations for a highly nonlinear example. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
[31]   THE ROLE OF SAMPLING FOR STABILITY AND PERFORMANCE IN UNCONSTRAINED NONLINEAR MODEL PREDICTIVE CONTROL [J].
Worthmann, Karl ;
Reble, Marcus ;
Gruene, Lars ;
Allgoewer, Frank .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2014, 52 (01) :581-605
[32]   Robust Tubes in Nonlinear Model Predictive Control [J].
Cannon, Mark ;
Buerger, Johannes ;
Kouvaritakis, Basil ;
Rakovic, Sasa .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2011, 56 (08) :1942-1947
[33]   Nonlinear Model Predictive Congestion Control for Networks [J].
Han, Cunwu ;
Li, Mengqi ;
Jing, Yuanwei ;
Liu, Lei ;
Pang, Zhonghua ;
Sun, Dehui .
IFAC PAPERSONLINE, 2017, 50 (01) :552-557
[34]   A Velocity Algorithm for Nonlinear Model Predictive Control [J].
Cisneros, Pablo S. G. ;
Werner, Herbert .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2021, 29 (03) :1310-1315
[35]   Nonlinear Predictive Control of a Hydropower System Model [J].
Zhang, Runfan ;
Chen, Diyi ;
Ma, Xiaoyi .
ENTROPY, 2015, 17 (09) :6129-6149
[36]   Nonlinear Model Predictive Control with aggregated constraints? [J].
Pereira, Mateus de Freitas Virgilio ;
V. Kolmanovsky, Ilya ;
Cesnik, Carlos E. S. .
AUTOMATICA, 2022, 146
[37]   Nonlinear Model Predictive Control Based on Fixed-Point Iterations [J].
Graichen, K. .
AT-AUTOMATISIERUNGSTECHNIK, 2012, 60 (08) :442-451
[38]   Predictive optimal control for thermo-mechanical pulping processes with multi-stage low consistency refining [J].
Harinath, Eranda ;
Biegler, L. T. ;
Dumont, Guy A. .
JOURNAL OF PROCESS CONTROL, 2013, 23 (07) :1001-1011
[39]   Robust Nonlinear Model Predictive Control for Two-Stage Anaerobic Digesters [J].
Piceno-Diaz, Ennio R. ;
Ricardez-Sandoval, Luis A. ;
Gutierrez-Limon, Miguel A. ;
Mendez-Acosta, Hugo O. ;
Puebla, Hector .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2020, 59 (52) :22559-22572
[40]   Hierarchical nonlinear model predictive control with multi-time-scale for wastewater treatment process [J].
Han, Hong-Gui ;
Fu, Shi-Jia ;
Sun, Hao-Yuan ;
Qiao, Jun-Fei .
JOURNAL OF PROCESS CONTROL, 2021, 108 :125-135