Solitons in the Salerno model with competing nonlinearities

被引:34
作者
Gomez-Gardeñes, J [1 ]
Malomed, BA
Floría, LM
Bishop, AR
机构
[1] Univ Zaragoza, Dept Fis Mat Condensada, E-50009 Zaragoza, Spain
[2] Univ Zaragoza, Inst Biocomputac & Fis Sistemas Complejos, E-50009 Zaragoza, Spain
[3] Univ Zaragoza, Inst Ciencia Mat Aragon, E-50009 Zaragoza, Spain
[4] Fac Engn, Sch Elect Engn, Dept Interdisciplinary Studies, IL-69978 Tel Aviv, Israel
[5] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[6] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
来源
PHYSICAL REVIEW E | 2006年 / 73卷 / 03期
关键词
D O I
10.1103/PhysRevE.73.036608
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We consider a lattice equation (Salerno model) combining onsite self-focusing and intersite self-defocusing cubic terms, which may describe a Bose-Einstein condensate of dipolar atoms trapped in a strong periodic potential. In the continuum approximation, the model gives rise to solitons in a finite band of frequencies, with sechlike solitons near one edge, and an exact peakon solution at the other. A similar family of solitons is found in the discrete system, including a peakon; beyond the peakon, the family continues in the form of cuspons. Stability of the lattice solitons is explored through computation of eigenvalues for small perturbations, and by direct simulations. A small part of the family is unstable (in that case, the discrete solitons transform into robust pulsonic excitations); both peakons and cuspons are stable. The Vakhitov-Kolokolov criterion precisely explains the stability of regular solitons and peakons, but does not apply to cuspons. In-phase and out-of-phase bound states of solitons are also constructed. They exchange their stability at a point where the bound solitons are peakons. Mobile solitons, composed of a moving core and background, exist up to a critical value of the strength of the self-defocusing intersite nonlinearity. Colliding solitons always merge into a single pulse.
引用
收藏
页数:8
相关论文
共 26 条
  • [1] Methods for discrete solitons in nonlinear lattices
    Ablowitz, MJ
    Musslimani, ZH
    Biondini, G
    [J]. PHYSICAL REVIEW E, 2002, 65 (02):
  • [2] NONLINEAR DIFFERENTIAL-DIFFERENCE EQUATIONS AND FOURIER-ANALYSIS
    ABLOWITZ, MJ
    LADIK, JF
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1976, 17 (06) : 1011 - 1018
  • [3] Wave collapse in physics: principles and applications to light and plasma waves
    Berge, L
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1998, 303 (5-6): : 259 - 370
  • [4] Resonance in the collision of two discrete intrinsic localized excitations
    Cai, D
    Bishop, AR
    Gronbech-Jensen, N
    [J]. PHYSICAL REVIEW E, 1997, 56 (06): : 7246 - 7252
  • [5] Perturbation theories of a discrete, integrable nonlinear Schrodinger equation
    Cai, D
    Bishop, AR
    GronbechJensen, N
    [J]. PHYSICAL REVIEW E, 1996, 53 (04): : 4131 - 4136
  • [6] QUASI-SOLITON AND OTHER BEHAVIOR OF THE NONLINEAR CUBIC-QUINTIC SCHRODINGER-EQUATION
    COWAN, S
    ENNS, RH
    RANGNEKAR, SS
    SANGHERA, SS
    [J]. CANADIAN JOURNAL OF PHYSICS, 1986, 64 (03) : 311 - 315
  • [7] Spatially inhomogeneous time-periodic propagating waves in anharmonic systems
    Cretegny, T
    Aubry, S
    [J]. PHYSICAL REVIEW B, 1997, 55 (18): : 11929 - 11932
  • [8] Two-soliton collisions in a near-integrable lattice system
    Dmitriev, SV
    Kevrekidis, PG
    Malomed, BA
    Frantzeskakis, DJ
    [J]. PHYSICAL REVIEW E, 2003, 68 (05):
  • [9] Nonintegrable Schrodinger discrete breathers
    Gómez-Gardeñes, J
    Floría, LM
    Peyrard, M
    Bishop, AR
    [J]. CHAOS, 2004, 14 (04) : 1130 - 1147
  • [10] Mobile localization in nonlinear Schrodinger lattices
    Gómez-Gardeñes, J
    Falo, F
    Floría, LM
    [J]. PHYSICS LETTERS A, 2004, 332 (3-4) : 213 - 219