A comparative analysis of computational approaches to relative protein quantification using peptide peak intensities in label-free LC-MS proteomics experiments

被引:69
作者
Matzke, Melissa M. [1 ]
Brown, Joseph N. [1 ]
Gritsenko, Marina A. [1 ]
Metz, Thomas O. [1 ]
Pounds, Joel G. [1 ]
Rodland, Karin D. [1 ]
Shukla, Anil K. [1 ]
Smith, Richard D. [1 ]
Waters, Katrina M. [1 ]
McDermott, Jason E. [1 ]
Webb-Robertson, Bobbie-Jo [1 ]
机构
[1] Pacific NW Natl Lab, Richland, WA 99352 USA
基金
美国国家卫生研究院;
关键词
Label-free; Peak intensity; Protein quantification; Relative; SPECTROMETRY-BASED PROTEOMICS; MASS-SPECTROMETRY; QUANTITATIVE PROTEOMICS; STATISTICAL-MODEL; EXPRESSION; STRATEGY;
D O I
10.1002/pmic.201200269
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Liquid chromatography coupled with mass spectrometry (LC-MS) is widely used to identify and quantify peptides in complex biological samples. In particular, label-free shotgun proteomics is highly effective for the identification of peptides and subsequently obtaining a global protein profile of a sample. As a result, this approach is widely used for discovery studies. Typically, the objective of these discovery studies is to identify proteins that are affected by some condition of interest (e.g. disease, exposure). However, for complex biological samples, label-free LC-MS proteomics experiments measure peptides and do not directly yield protein quantities. Thus, protein quantification must be inferred from one or more measured peptides. In recent years, many computational approaches to relative protein quantification of label-free LC-MS data have been published. In this review, we examine the most commonly employed quantification approaches to relative protein abundance from peak intensity values, evaluate their individual merits, and discuss challenges in the use of the various computational approaches.
引用
收藏
页码:493 / 503
页数:11
相关论文
共 27 条
[1]   Comparison and applications of label-free absolute proteome quantification methods on Escherichia coli [J].
Arike, L. ;
Valgepea, K. ;
Peil, L. ;
Nahku, R. ;
Adamberg, K. ;
Vilu, R. .
JOURNAL OF PROTEOMICS, 2012, 75 (17) :5437-5448
[2]   Quantitative mass spectrometry in proteomics: a critical review [J].
Bantscheff, Marcus ;
Schirle, Markus ;
Sweetman, Gavain ;
Rick, Jens ;
Kuster, Bernhard .
ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2007, 389 (04) :1017-1031
[3]  
Bukhman Yury V., 2008, Journal of Bioinformatics and Computational Biology, V6, P107, DOI 10.1142/S0219720008003321
[4]   Absolute Protein Quantification by LC/MSE for Global Analysis of Salicylic Acid-induced Plant Protein Secretion Responses [J].
Cheng, Fang-yi ;
Blackburn, Kevin ;
Lin, Yu-min ;
Goshe, Michael B. ;
Williamson, John D. .
JOURNAL OF PROTEOME RESEARCH, 2009, 8 (01) :82-93
[5]  
Clough T., 2011, MS STATS STAT PROTEI
[6]   Protein Quantification in Label-Free LC-MS Experiments [J].
Clough, Timothy ;
Key, Melissa ;
Ott, Ilka ;
Ragg, Susanne ;
Schadow, Gunther ;
Vitek, Olga .
JOURNAL OF PROTEOME RESEARCH, 2009, 8 (11) :5275-5284
[7]   Mixed-effects statistical model for comparative LC-MS proteomics studies [J].
Daly, D. S. ;
Anderson, K. K. ;
Panisko, E. A. ;
Purvine, S. O. ;
Fang, R. ;
Monroe, M. E. ;
Baker, S. E. .
JOURNAL OF PROTEOME RESEARCH, 2008, 7 (03) :1209-1217
[8]   Options and considerations when selecting a quantitative proteomics strategy [J].
Domon, Bruno ;
Aebersold, Ruedi .
NATURE BIOTECHNOLOGY, 2010, 28 (07) :710-721
[9]   Accurate Mass Spectrometry Based Protein Quantification via Shared Peptides [J].
Dost, Banu ;
Bandeira, Nuno ;
Li, Xiangqian ;
Shen, Zhouxin ;
Briggs, Steven P. ;
Bafna, Vineet .
JOURNAL OF COMPUTATIONAL BIOLOGY, 2012, 19 (04) :337-348
[10]   A computational strategy to analyze label-free temporal bottom-up proteomics data [J].
Du, Xiuxia ;
Callister, Stephen J. ;
Manes, Nathan P. ;
Adkins, Joshua N. ;
Alexandridis, Roxana A. ;
Zeng, Xiaohua ;
Roh, Jung Hyeob ;
Smith, William E. ;
Donohue, Timothy J. ;
Kaplan, Samuel ;
Smith, Richard D. ;
Lipton, Mary S. .
JOURNAL OF PROTEOME RESEARCH, 2008, 7 (07) :2595-2604