Direct sums of local torsion-free abelian groups

被引:2
作者
Arnold, DM [1 ]
机构
[1] Baylor Univ, Dept Math, Waco, TX 76798 USA
关键词
Krull-Schmidt groups; direct sum decompositions; local torsion-free abelian groups;
D O I
10.1090/S0002-9939-01-06246-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The category of local torsion-free abelian groups of finite rank is known to have the cancellation and n-th root properties but not the Krull-Schmidt property. It is shown that 10 is the least rank of a local torsion-free abelian group with two non-equivalent direct sum decompositions into indecomposable summands. This answers a question posed by M.C.R. Butler in the 1960's.
引用
收藏
页码:1611 / 1617
页数:7
相关论文
共 12 条
[1]  
ARNOLD D, 2001, ABELIAN GROUPS RINGS, P65, DOI UNSP CMP 2001:09
[2]  
ARNOLD D, 2000, CMS BOOKS MATH, DOI UNSP MR 2001G:16030
[3]  
ARNOLD D, 1982, LECT NOTES MATH, V931, DOI UNSP MR 84D:2002
[4]   ENDOMORPHISM RINGS AND DIRECT SUMS OF TORSION FREE ABELIAN-GROUPS [J].
ARNOLD, DM ;
LADY, EL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 211 (OCT) :225-237
[5]   Co-purely indecomposable modules over discrete valuation rings [J].
Arnold, DM ;
Dugas, M .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2001, 161 (1-2) :1-12
[6]  
ARNOLD DM, 1972, P LOND MATH SOC, V24, P204
[7]  
Fuchs L., 1973, Infinite Abelian Groups, V2
[8]   The Krull-Schmidt problem for modules over valuation domains [J].
Goldsmith, B ;
May, W .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1999, 140 (01) :57-63
[9]   SPLITTING FIELDS FOR TORSION-FREE MODULES OVER DISCRETE VALUATION RINGS .1. [J].
LADY, EL .
JOURNAL OF ALGEBRA, 1977, 49 (01) :261-275
[10]   NEARLY ISOMORPHIC TORSION FREE ABELIAN-GROUPS [J].
LADY, EL .
JOURNAL OF ALGEBRA, 1975, 35 (1-3) :235-238