Form invariance and Lie symmetry of equations of non-holonomic systems

被引:115
作者
Wang, SY [1 ]
Mei, FX [1 ]
机构
[1] Beijing Inst Technol, Dept Appl Mech, Beijing 100081, Peoples R China
来源
CHINESE PHYSICS | 2002年 / 11卷 / 01期
关键词
analytical mechanics; non-holonomic mechanics; form invariance; Lie symmetry;
D O I
10.1088/1009-1963/11/1/302
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we study the relation between the form invariance and Lie symmetry of non-holonomic systems. Firstly, we give the definitions and criteria of the form invariance and Lie symmetry in the systems. Next, their relation is deduced. We show that the structure equation and conserved quantity of the form invariance and Lie symmetry of non-holonomic systems have the same form. Finally, we give an example to illustrate the application of the result.
引用
收藏
页码:5 / 8
页数:4
相关论文
共 11 条
[1]   DYNAMICAL SYMMETRIES AND CONSERVED QUANTITIES [J].
LUTZKY, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1979, 12 (07) :973-981
[2]  
MEI F.X., 2000, Journal of Beijing Institute of Technology, V9, P120
[3]  
Mei F.X, 2001, J BEIJING I TECHNOLO, V21, P535
[4]   Form invariance of Appell equations [J].
Mei, FX .
CHINESE PHYSICS, 2001, 10 (03) :177-180
[5]  
Mei FX., 2000, Appl. Mech. Rev, V53, P283, DOI [10.1115/1.3097331, DOI 10.1115/1.3097331]
[6]   SYMMETRIES OF THE TIME-DEPENDENT N-DIMENSIONAL OSCILLATOR [J].
PRINCE, GE ;
ELIEZER, CJ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1980, 13 (03) :815-823
[7]  
PRINCE GE, 1981, J PHYS A, V14, P578
[8]   On the form invariance of Nielsen equations [J].
Wang, SY ;
Mei, FX .
CHINESE PHYSICS, 2001, 10 (05) :373-375
[9]  
Zhang RC, 2000, CHINESE PHYS, V9, P801, DOI 10.1088/1009-1963/9/11/001
[10]  
Zhang RC, 2000, CHINESE PHYS, V9, P561, DOI 10.1088/1009-1963/9/8/001